
Travel in the virtualized past:
cheap fares

and
first class seats

Liuba Shrira

(with Ross Shaull (Brandeis) and
Catharine van Ingen (Microsoft))

Long-lived snapshots

So, disk is cheap
a storage system can take snapshots of past states and retain for a

long time

Past state analysis is increasingly important…

CRM: Casino upgrades coupons for hi-spenders (the morning after)

ICU monitoring system: past response to drugs, interesting
snapshots: abnormalities, specialists’ visits.. (one lifetime)

Wikipedia citation in a legal ruling: what was judge Posner
thinking? (many lifetimes)

How to support interesting past state analysis over long time?

Premise: BITE

what you need is
a storage system capability for
back-in-time execution (BITE):
run read-only applications against
snapshots of past states in addition to
current state

to answer in real-time
new and old questions

What can you do with BITE?

Analyze past: to “predict future”

Reflect:
Organize past: “selective memory”
rank with BITE, keep interesting stuff for
longer

Verify past: “audited memory”
(spotless mind..)

validate constraints with BITE,
undo/fix “bad” transactions + dependents

BITE Snapshots:
Semantics

Consistent snapshots: invariants hold for old code
(consistency differs in different systems)

BITE of general code:
(ad-hoc new code vs canned queries)

Application chooses the snapshot: meaningful to app
(vs “some time in the past” in SI, or every 30sec)

at high “resolution” (vs backup)

BITE Snapshots:
Implementation

Where is your long-lived past ?

physically -
today: too close

(Postgress, Temporal DB, CVFS) disruptive in long term
or too far
(warehouse: Netezza) no real-time analysis

and logically, in the software stack -
too high
(e.g. logical record level) - complex
or low
(e.g. VSS, below cache) – disruptive for consistent snapshots

We want:

“Right” look:
snapshots, look like current state
(not the other way around – like temporal DB)

“Right” distance:
run BITE programs in real-time in-house
non-disruptive to the storage system
(short or long term)

The “right look” -

past virtualized as current state

Application

put

put

X := Snapshot now

Run on snapshot X

get

Our Snapshot System

Applications
“time travel” in a
past virtualized

to look like
present.

Back-In-Time
Execution

(BITE)

The “right distance” -

a snapshot box inside every storage system
runs code over snapshots in real-time
in-house (not warehouse)

“..a chicken in every pot”..

A snapshot: Interface

Current state DB storage: pages + page table

A Snapshot: virtualizes Db storage
snapshot pages + snapshot page table

So BITE is transparent:
for snapshot v mount Snapshot Page Table(v)

BITE(v): code accesses snapshot v pages
(1) page Q (modified after v) (2) P (unmodified)

SnapStore disk:
flexible

representation

DB disk

SPTv PT

Buffer cache

R

But which cache?

Our Approach: Cache Integration
• Our approach

– Virtualized
– Crash consistent
– Requires Write-Ahead

Snapshot invariant

snapshot

P Q

P Q

P Q P Q

snapshotsnapshot

Best Level for BITE?

• High level
– Database, file system
– Leverage recovery
– Delay writes File System

Database

Volume Manager

Application

Controller

R

Without cache: disk COW

• On disk
– Sync for consistency
– Negotiate with application to

allow progress to be made
while syncing; worst case:
quiescence

P Q

snapshot
QP QP

snapshot

More details

Split COW

Q WP

Q

W

P

DB
storage

PT

step 1: app declares a snapshot v1
step 2: app modifies page P

Q

W

P

Q WP

Q

W

P

PT

P

split COW

SPT1

Snapshots separate
(SnapStore)

cont… app declares snapshot v2
app commits updates to P, Q

First P update after v1 retains before-image of P

DB
storage

Q WP

Q

W

P
Q

W
PT

…

Q

W

P

split COW

SPT1

SPT2

SnapStore
P

P

P

DB
storage Q

Snapshot page tables

Snapshot pages

Q WP

Q

W

P
Q

W
PT

BUY:
update in-place
Pay extra write

but no declustering

Q

W

P

split COW
Q

SPT1

SPT2

(cheap to change snapshot rep:
how (diff, stripe, crypto)

and where you write)

SnapStore
P

P

P

DB
storage

Problem:
finding snapshot pages

Q

W

P

P

Indexing split COW
snapshots

SPTv

SPTv+1

Problem:
Code needs to

find
snapshot (v)

pages
For BITE (v)
But updating
snapshot page
tables can be

costly

Q WP

Q

W

P

PT

…

split COW

P

Q

W

DB
storage P

P

Instead: write snapshot page mappings in a log

QPQ WP

Q

W

P

PT

QP P …

split COW

v v+1

DB
storage

Lookup:
scan the mapLog

mapLog

MapLog: a new indexing method
for split COW snapshots

Key notion: FEM – first encountered mapping

Notice where the mappings for v start in a log
Write mappings in correct order (decoupled from page order)

Mapping Order Invariant:
mappings retained for snapshot v,
are written before
mappings retained for snapshot v+1

Lookup
scan mapLog from start v collecting FEMs

P QP

QP P …

MapLog algorithm:

Start(v1) Start(v2)

FEM search =
“Coupon collection”

To lookup page P for snapshot v:
scan mapLog from Start(v1) to FEM(P)

mapLog

pageLog

Skewed updates

Background mapping writes - cheap

But foreground scan to find
a “cold” page is slow -

“hot” mappings in the way

Yet, many mappings are “hot” and
many pages in a snapshot are “cold”

Q WP

Q

W

P

PT

split COW

DB
storage P QP

QP P …
v1 v2

2-Skippy: high lane drops duplicates

K-Skippy:
optimal index for COW snapshots
disk i/o optimal write and lookup operations

Allows to run code in real-time over
multi-year snapshots, as efficient
as short-lived snapshots
even in skewed workloads

As fast as fastest “as of” temporal access methods
(TSB,..)

but cheap writes (important for snapshot GC)

Status + paper trail
SNAP, non-disruptive split snapshot system

runs in experimental Thor-2 object storage system (icde05),

Thresher, snapshot storage manager: no copy GC
runs in SNAP (usenix06)

SKIPPY, read-write optimized long-lived index method for COW
runs in SNAP, BDB (icde08)

SNAP/embed, split snapshots – in progress
runs in commercial BDB

Performance results look good

a 5000 feet view:

Non-disruptive snapshots
mean:

Snapshots should keep up with DB
performance
without blocking application
access to DB

split COW

Cost of WAS-Invariant

• Prototype implemented in Berkeley DB 4.5.20
• 1.8 GB database; snap-1
• Writing due to WAS (& Skippy) can be hidden

– Uniform: about 1 to 1 (cache: 9994 dirty pages)
– Highly skewed (99/1): 35 to 1
– Trickle to avoid slowing down checkpoint

• Maintains WAS invariant because trickle before chkpt

• Not end of story for BDB
– CPU costs: cache COW + Skippy
– We are analyzing how these costs can be minimized

High-Order Bit:

Long-lived, split snapshots of past states

that run code in real-time

virtualized in the buffer cache

are cheaper than you may think!

split COW

Take home
New snapshot approach

new semantics: application specified, persistent,
discriminated

new architecture: split COW : Skippy, cache-COW, GC
virtualizes the past to look like the present
in the buffer manager

in my pot:
transactional storage system
SNAP, now Berkeley DB,

Your pot? BITE over our collective memories?

Eager Discriminated Snapshot GC

Free!
the cost:

creating (duplicating) for each rank
separate Mapper

is minimal

BITE latency
Traversal T1:

Current Page-based Diff-based (d=4)
DB snapshots snapshots
17.53s 27.06s 42.11s

slow, but dual representation
accelerates to page-based

Non-disruptiveness for
dual = the hardest working rep

how much drop in
rate-of-drain / rate-of-pour ?

Non-disruptiveness: single user
drop relative to Thor

Non-disruptiveness, heavy load
multi-user: “DB works harder”

