Optimizing Network Virtualization in Xen

Jeff Shafer, Paul Willmann, Scott Rixner, Alan Cox Rice University

Aravind Menon, Willy Zwaenepoel EPFL

Virtual Machines

Multiple VMs on a single machine

- □ VMM/Hypervisor provides VM abstraction
- Each VM runs its own "guest" OS

Applications

- Server consolidation
- Migration
- ...

Xen: open-source paravirtualization solution

Virtual Machine I/O

- Hardware devices shared between guests
- Software (de-)multiplexing
 - Data, interrupts
 - Xen: hypervisor, driver domain
- Overhead can be substantial
 Important for networking on servers

Xen 2.0.6 Network Performance

2.4GHz Xeon, Linux 2.6.11

4

Talk Outline

- Xen networking
- Software optimizations [Usenix 06]
- Hardware solution [HPCA 07]
 - Concurrent Direct Network Access (CDNA)

Networking in Xen

Xen Networking Overhead

- Page remapping
- Context switching guest/driver
- Software bridge management
- Interrupt handling

Software Optimizations

- High-level virtual NIC
- I/O channel optimizations
- Virtual memory optimizations

Basic Xen I/O architecture unchanged Driver domain

Preview: Overall Results

Optimizing Network Virtualization in Xen

Our Optimizations

Smart virtual NIC

I/O channel optimizations

Virtual Memory optimizations

Xen: Dumb Virtual NIC

Smart Virtual NIC

- Support offload in virtual NIC
- Independent of physical NIC
 - Emulate offload in driver domain if required

Smart Virtual NIC: Architecture

 Offload in virtual NIC
 Offload driver in driver domain

TCP Segmentation Offload (TSO)

Native Linux

Large effective MTUFewer "packets"

Lower per-byte cost

Xen Virtualization Overheads (TSO)

- No TSO support
- More "packets"
- Higher per-byte cost

Smart Virtual/Physical NIC

TSO support

Fewer "packets"

Per-byte cost much reduced

Smart Virtual/Dumb Physical NIC

Fewer "packets" above offload driver

 I/O virtualization cost still reduced

Evaluation

- 2.4 GHz Xeon
- 4 Intel Pro-1000 NICs
 - □ Support TSO, S/G, Checksum
- Xen 2.0.6, Linux 2.6.11
- Transmit workloads
 Zero-copy sendfile

Evaluation: Sendfile

Optimizing Network Virtualization in Xen

Optimizing Network Virtualization in Xen

Evaluation: Offload Driver

21

Other Optimizations

I/O Channel optimizations

 Avoid mapping on transmit path
 Copy instead of remapping on receive path

 Virtual memory optimizations

 Superpages
 Global page mappings

Overall Results

Optimizing Network Virtualization in Xen

Receive Processing

Packets handled individually
 Bridge
 Drivers

- High per-packet cost
- No obvious receiveside optimizations

Receive Performance

Optimizing Network Virtualization in Xen

Software Optimizations

- Support a smart virtual NICs
- Reduce Xen virtualization overheads
 - "Smart" device better than "dumb" device
 - □ Transmit performance improvements of 4x
- Other optimizations yield further benefits

Limitations

- Receive performance limited
- Transmit performance scales poorly
 - Performance drops with increasing no of VMs

Can new hardware give further benefits?

Concurrent Direct Network Access

- CDNA NIC exports up to 128 contexts
- Context ~= individual interface
- Each guest connects to a context
- CDNA NIC multiplexes network traffic
- Not the hypervisor or the driver domain

Networking in Xen (again)

Xen + CDNA Networking

Performance Improvement

Remove driver domain from

🗆 Data

Interrupts

As before, remove hypervisor from

Data

- Hypervisor only responsible for
 - □ Virtual interrupts
 - Assigning context to guest OS

CDNA NIC Architecture

Optimizing Network Virtualization in Xen

Host/NIC Communication

Programmed I/O from host to NIC

- "Mailboxes" in CDNA NIC
- □ Typical use: Transfer control data and buffer indices

DMA by NIC

- Bidirectional
- □ Typical use: Bulk data transfer
- Interrupts from NIC to Host

Typical use: Notification of sent/received packet(s)

Protection Issues

- Access to mailboxes
- Deviating interrupts
- DMA into other guest

Protection (1)

Mailboxes

□ Page per context mapped to one VM

CDNA NIC Architecture

Optimizing Network Virtualization in Xen

Protection (2)

Mailboxes Page per context mapped to one VM Interrupts Mediated by hypervisor

Xen + CDNA Networking

Protection (3)

Mailboxes □ Page per context mapped to one VM Interrupts Mediated by hypervisor Buffers validated by hypervisor □ No buffer deallocation before DMA complete

CDNA NIC Architecture

Optimizing Network Virtualization in Xen

CDNA NIC Prototype

- FPGA Development Board
- Virtex and Spartan FPGAs
- 2 PowerPC 405 processors
 - Only 1 used for CDNA

- DDR and SRAM Memory
- Gigabit Ethernet PHY
- 64-bit / 66 MHz PCI bus

CDNA Evaluation

- Opteron 250 (2.4 GHz)
- 2 Broadcom NICs
- 2 CDNA NICs
- Xen 2.0.6, Linux 2.6.11
- Streaming transmit/receive workloads

Evaluation: Throughput

Evaluation: Scalability

Hardware Optimizations

Remove driver domain from Xen networking

 Improved throughput and scalability

 Minimal cost to have NIC multiplex data

 512kB SRAM for PIO mailboxes (128 guests)
 8MB of DDR memory for data buffers
 Custom firmware to service all contexts

Conclusions

Xen's low-level virtual NIC limits performance
 Software optimizations can remove this bottleneck
 For transmit traffic of a few guests

- Driver domain overhead limits scalability
 - CDNA removes driver domain from networking
 - Improved transmit and receive performance
 - Better scalability