
Towards High-Quality I/O Virtualization

Yaozu Dong, Jinquan Dai, Zhiteng Huang, Haibing Guan, Kevin Tian,
Yunhong Jiang

IO virtualization in Xen

Scheduler

FE

Drv

Native

Driver 1

Native

Driver 2

BE

Drv

Device

Model

DomUDom0

U

K

U

K

Xen

Pass thru
Devices

Shared

Memory

What is high-quality I/O virtualization

High-quality I/O virtualization

• Complete device semantics

• Full-feature set

• Close-to-native performance

• Real-time response

Gap of existing solutions

• Software approaches

— Intrinsic virtualization overhead

— Fail to catch up full-feature set

• Existing direct I/O solutions

— Ignore the fact of staggering variety of PC hardware, especially for client devices

— Lack of complete device semantics

— Ignorant about driver virtualization hole which prevents from wide adoption

• Real time response is sacrificed

Driver (CPU) �������� device interaction

Interaction between device and driver:

•Driver programs device through register access

•Device notifies driver through interrupt

•Device could DMA for massive data movement

High quality I/O virtualization requires above semantics to be
intact

Device CPU
Shared

Memory

Interrupt

Register Access

DMA

Preserving complete device semantics is a key to vast commodity devicesPreserving complete device semantics is a key to vast commodity devices

Preserving device semantics – State

Run-time device semantics

• Naturally preserved due to IO registers pass-through

Initial device semantics – risk of inconsistency

• A reclaimed device may have been set to an arbitrary state by previous user

• An in-fly transaction may access reclaimed memory

High quality I/O virtualization addresses inconsistency

• Initialize reclaimed device into known state as BIOS does at boot phase

• Device Function Level Reset (FLR)

— FLR is optional PCIe capability

• PCI link reset

— Upstream switch may not exist

• D0 � D3 � D0 power state transition

— Lead to state reset for most devices

Preserving device semantics – Interrupt

Interrupt sharing - compromise isolation

• Guest may assert/de-assert the shared interrupt line to
arbitrary state, or even generate interrupt storm

High quality I/O virtualization embraces host MSI

• Dedicated vector(s) for device

• If guest is working in MSI mode

— Remap guest MSI capability to host MSI

• If guest is working in INTx mode

— Emulate virtual interrupt line state according to host MSI event. E.g:

• Asserting when host MSI fires

• De-asserting when EOI is issued

Preserving device semantics – Caching

Device may use ‘cache-bypass DMA’

• “No Snoop” type in DMA message

• Driver ensures cache coherency

— Flush cache before notifying device to start DMA etc.

Incorrect cache semantics may lead to device malfunction

High quality I/O virtualization ensures strict cache semantics, by
propagating guest effective memory type to host

• Derived from MTRR (indexed by physical address), and PAT
(indexed by PAT/PCD/PWT bits in PTE)

Propagating guest effective memory type

PA0

1: Indexing

PAn… …

CR_PAT

PA7

PDE

PTE

LA 2: PA

Effective

memory type

MTRRs
Page table

3: co-deciding

• Guest effective memory type is derived from guest MTRR/PAT

• Program shadow PTE (taking effective with host MTRR) to have
same effective memory type

— Host MTRR is not changed for performance reason

Driver virtualization hole prevents direct I/O from
wide adoption

Staggering variety of PC hardware

•Build-in device is originally designed to be bound with the
platform

•Different HW features such as “No-Snoopy” control may be

employed in different device

Drivers originally developed for native environment never
foreseeing that they would run in virtual environment

Device resource in direct I/O

Sensitive device resources (SDR)

• Defined in public specification, e.g:

— Standard PCI resources such as BAR and function header type etc.

— Platform resource such as device BDF

•VMM trap-and-emulates SDR by public defined interfaces

Non-sensitive device resources (NSDR)

•Device specific registers which VMM doesn’t need to know

• Simply pass through

Driver virtualization hole (DVH)

Drivers, accessing SDR bypassing virtualization layer, can lead
to unexpected result in direct I/O

—This is coined as driver virtualization hole for direct I/O

Examples of DVH

• Acquiring SDRs without using standard interface defined in
relevant public specifications

• Using sensitive device resources for operations other than
those defined in relevant public specification

• Accessing platform specific resource that does not belong to
the device

Acquiring SDRs

Acquiring SDRs without using standard interface

• VMM emulates SDRs by trapping at standard interface

• Acquiring SDRs using device specific knowledge won’t get

right information reflecting the virtual platform

file “driver/net/e1000e/lib.c“file “diver/char/drm/radeon_cp.c”

Utilizing SDRs

Using SDRs for operations other than those defined in public
specification

• For example, BDF is used to identify an PCI function, using it

to specify MAC address of NIC could lead to mac address

confliction in virtual environment

file “driver/net/e1000e/lib.c”

Accessing platform specific resource

Accessing platform specific resource, which does not belong to
the device, may lead to DVH

• Integrated device driver may directly access chipset specific

registers

—Works in native environment

— But prevents from running virtually as direct I/O since the guest chipset

may be different from physical one

Performance of high quality I/O virtualization

Performance of high-quality I/O virtualization

• Up to 2.86X of PV disk performance

• Up to 3.6X of PV network

— NIC saturates CPU at 2.6Gb/s for 10Gbit Ethernet.

— Utilizing VMDq technology can improve the bandwidth to 8.2Gb/s, but still
suffer from CPU utilization and bandwidth.

• Within 3.76% of native for video

— PV graphic virtualization solution such as VMGL suffers from losing of
full-feature set.

Disk direct I/O: Up to 2.86X of PV performance

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32
Queue Depth

T
h
r
o
u
g
h
p
u
t
(M
B
p
s)
)

0

5

10

15

20

25

30

U
ti
li
za
ti
o
n
 (
%
)

Native DIO PV Native CPU DIO CPU PV CPU

Network direct I/O: Up to 3.6X of PV performance

0

1

2

3

4

5

6

7

8

9

10

Native Direct I/O PV

T
h
r
o
u
g
h
p
u
t
(G
b
p
s)
)

0

5

10

15

20

25

30

U
tl
iz
a
ti
o
n
 (
%
)

Throughput CPU%

Graphics direct I/O: Within 3.76% of native

0.00

20.00

40.00

60.00

80.00

100.00

120.00

F
ill
 R

at
e
-S

F
ill
 R

at
e
-M

V
er

te
x
 S

ha
de

r

P
ix
el
 S

ha
de

r 2
.0

R
a
gt

ro
ll

W
in
g
s
of

 F
ur

y

B
at

tle
 o

f P
ro

xy
co

n

T
ro

ll'
s
La

ir

M
ot

he
r's

 N
at
u
re

G
am

e
T
ot

al
 S

co
re

P
e
rf
o
rm
a
n
c
e
 r
e
la
ti
v
e
 t
o
 n
a
ti
v
e

Direct I/O Native

But, how about Audio?

Direct I/O doesn’t solve all the problems without real-time
response

• Buffer overruns of input stream

— Lost of input data

• Buffer underruns of output stream

— Glitch

Benchmarking audio quality

Bandwidth is not a key concern, but buffer underrun/overrun is.

• Run Amarok music player as workload

• Instrument ALSA driver to measure buffer underrun with audio
direct I/O

— Run UP guest with dom0 on top of Xen

• VCPUs of both domains are pinned to same pCPU

• A busy loop application in dom0 to compete CPU cycles

— Assign audio card to guest.

Xen credit scheduler focus on fairness

•BOOST state helps in reducing IO response latency, but not
guaranteed.

With ½ (1:1) CPU reservation

Guest:dom0 scheduler weight = 1:1

0

2

4

6

8

Time elapsed (total 180 sec)

B
u
ff
e
r
u
n
d
e
rr
u
n
 #

Buffer underrun is observable with ½ CPU reservation

(Xen default scheduler)

Buffer underrun is observable with ½ CPU reservation

(Xen default scheduler)

With 1/17 (1:16) CPU reservation

Guest:dom0 scheduler weight = 1:16

0

2

4

6

8

Time elapsed (total 180 sec)

B
u
ff
e
r
u
n
d
e
rr
u
n
 #

Frequent buffer underruns with 1/17 CPU reservation

(Xen default scheduler)

Frequent buffer underruns with 1/17 CPU reservation

(Xen default scheduler)

Reducing scheduler tick to 1ms

Scheduler tick, from 10ms default to 1ms, reduces average buffer underrun frequency
from 2.47 per second to 0.594 for 1/17 CPU reservation

Scheduler tick, from 10ms default to 1ms, reduces average buffer underrun frequency
from 2.47 per second to 0.594 for 1/17 CPU reservation

Guest:dom0 scheduler weight = 1:16

0

2

4

6

8

Time elapsed (total 180 sec)

B
u
ff
e
r
u
n
d
e
rr
u
n
 #

But…

• Smaller scheduler tick also means performance overhead…

• REAL_TIME VMM scheduler could meet both performance

and response issue

— Schedule guest when the audio buffer is consumed, i.e. DMA interrupt.

REAL_TIME scheduler

Guest:dom0 scheduler weight = 1:16

0

2

4

6

8

Time elapsed (total 180 sec)

B
u
ff
e
r
u
n
d
e
rr
u
n
 #

Average audio buffer underrun frequency drops from average of 2.47 in default credit
scheduler to 0.506 for 1/17 CPU reservation

Average audio buffer underrun frequency drops from average of 2.47 in default credit
scheduler to 0.506 for 1/17 CPU reservation

Summarize

Our contribution toward high quality I/O virtualization:

• Preserving complete device semantics for direct I/O

• Avoiding driver virtualization hole

• Improving VMM scheduler for real-time response

