
The Effects of Unrolling and Inlining
on Python Bytecode Optimizations

Yosi Ben Asher, Nadav Rotem
Haifa University

The Python Programming Language

Very popular dynamic programming language
combining object-oriented and scripting concepts

Features a fully dynamic type system named 'duck
typing'

Compiled into bytecode and executed by an
interpreter

Known to be hundreds of times slower than C or Java

Data Flow Optimizations
Data flow optimizations are a set of optimizations that
are known to be very effective.

Typically, this set includes constant propagation,
common sub-expression elimination, algebraic
simplifications, copy propagation and dead code
elimination.

In general, these optimizations create a more dense
code by simplifying expressions and removing dead
code.

Example of Dynamic Typing

>>>def add(a, b): return a + b # define a new function

>>>add(1, 2) # integers
3

>>> add([1,2,3] , [4,5,6]) # lists
[1,2,3,4,5,6]

>>> add("hello ", "world ") # strings
"hello world "

Failed Data Flow Optimizations

The following algebraic simplification is valid for
integers : (a*2+ b*2) becomes (a+b) *2

However, if a and b are strings, it is not valid.

Optimizing Python

Applying compiler optimizations is challenging due to
Python's dynamic typing system.

In order to preserve the correctness of the original
program, special considerations must be taken even
when implementing the most standard optimizations.

Bytecode Optimization

In this work, we developed optimizations which are
unique to dynamic languages.

We dissasembeled the precompiled Python bytecode
and reconstructed into data-dependency trees and
optimize them.

We recovered compiled bytecode files (.pyc files)
which contain no AST information.

We have extended the standard data flow analysis
with specific rules to identify cases that are safe.

 Bytecode Structure

Python uses a stack-based bytecode which is
generated from the AST.

The Python opcodes operate directly on the stack.

A 'BINARY_ADD' instruction, for example, pops two
items from the stack and pushes a single item,
which is the sum of the two original items.

The add instruction tells the lower stack object to
call the internal '__add__' method with the other
object as a parameter.

Bytecode Structure

LOAD_FAST 0 // "a"
LOAD_FAST 1 // "b"
BINARY_ADD
RETURN_VALUE

Python 'Duck Typing' System

class Person():
 def talk(self): print "I am a person "

p = Person() # Create a new Person object

def quack(): print "I am a duck "

p.talk = quack # Override a function

>>>p.talk()
I am a duck

Unsafe Optimizations and Side Effects

Consider the following code:

 for i in xrange(100):
 sum += x*y

In Java, CSE pass would evaluate "x*y" only once.
However, in Python, a method could be overridden
by another method which has a side effect. This
method could potentially write a log file every time x is
multiplied by y.
We have no way of knowing in advance what x would
do when multiplied by y.

Loop Unrolling

Loop unrolling is a well-known transformation.
The first unrolling pass we implemented unrolls
numeric loops (xrange loops).
The unrolling of the 'xrange' iterator is done by
changing the 'xrange' constructor when it is created
in order to yield values in steps that are greater
than one.
Then, the body of the loop is duplicated and
modified to accommodate the changes and execute
the next iteration.

 xrange unrolling

Transformed loop:

m = n-(n % unroll)
unrolled loop body
for i in xrange(0,m-1,unroll):
 z = i*7 + i*2
 z = (i+1)*7 + (i+1)*2
 ...

loop tail
for i in xrange(m,n, 1):
 z = i*7 + i*2

Original loop :

for i in xrange(n):
 z = i*7 + i*2

The iteration range may
not be a multiplication
of the unroll parameter.

A 'tail' must finish the
last iterations.

 Complete Unrolling of Lists

Using iterators is the 'native' way to iterate over
data in Python.
We have implemented two variants of unrolled
iterations.
The first unroll pass is for lists of known size and
content. For example:

for x in [1,2,3,4]:
 print x

print 1
print 2
print 3
print 4

Unrolling Iterators of Unknown Size

def f(bar):
 sum = 0
 for p in bar:
 sum += p

def f(bar):
 sum = 0
 it = bar.__iter__()
 try:
 while(1):
 p1 = it.next() ; i = 1
 p2 = it.next() ; i = 2
 p3 = it.next() ; i = 3
 p4 = it.next() ; i = 4
 sum += p1+p2+p3+p4
 Except StopIteration:
 # handle tail if needed
 based on value of i
 if i > 1: ...
 if i > 2: ...

 Inlining of Functions

Python function calls are time-consuming in
comparison to other compiled languages.
Inlining is a transformation where a call to a
function or a method is replaced by its body, and
the called arguments are inserted into the body of
the loop.
Each return call in the original inlined function is
translated into a 'store' and 'jump to end' set of
opcodes.

Inlining and Unrolling may assist
oneanother

These transformations help to reduce the 'type
uncertainty'.
Inlined functions have access to type information
from the calling function. Parameters may become
constants.
 Complete unrolling of constant lists gives concrete
knowledge of type.

 Example

def func_2():
 t = 123
 for func in [F1,F2,F3]:
 func(t)

def func_2():
 t = 123
 F1(t)
 F2(t)
 F3(t)

User-Guided Optimizations

Some of the possible optimizations are not type-
safe.
We allow the user to specify which methods should
be optimized by Python 'decorators' which are
source code annotations.
This method can be further extended to indicate
other safety features.

@NumericCode
def func(x, y):
 return x*2 + y*2

 Bytecode Optimizations

Basic Block Optimization CFG Optimizations

Value propagation
Constant propagation
Common sub-expression
elimination
Loop invariant
Strength reduction
Memory optimizations

Load elimination
Store elimination

Global variable cache

Loop Unrolling:
Complete unroll
Iterator unroll
Range unroll
Random access
transformation

Method Inlining

Benckmarks

The proposed optimizations were tested using
several benchmarks: Pystone, Pybench, Crypto, PyPy
and several micro tests.
Results show significant improvement.

 Thank you. Questions ?

Backup Slides

 Python disassembly
 Technology Theme

def func(a,b,c):
 return a[b]*c + b*c + a[0]

>>> dis.dis(func)
 2 0 LOAD_FAST 0 (a)
 3 LOAD_FAST 1 (b)
 6 BINARY_SUBSCR
 7 LOAD_FAST 2 (c)
 10 BINARY_MULTIPLY
 11 LOAD_FAST 1 (b)
 14 LOAD_FAST 2 (c)
 17 BINARY_MULTIPLY
 18 BINARY_ADD
 19 LOAD_FAST 0 (a)
 22 LOAD_CONST 1 (0)
 25 BINARY_SUBSCR
 26 BINARY_ADD
 27 RETURN_VALUE

 Inlining example

def f(x):
 v = 5
 if (x==9):
 return x + v
 return x*3

def g():
 sum = 0
 for i in xrange(n):
 sum += f(7+i)
 return sum

def new_g():
 sum = 0
 for i in xrange(n):
 $inline_x = 7+i
 $local_v = 5
 if ($inline_x==9):
 _inline_return=x+$local_v
 *goto END_TAG
 _inline_return = x*3
 *goto END_TAG
END_TAG:
sum += _inline_return
return sum

