
Software at Petascale and
Exascale

Supercomputing – Next 10 Years

www.parallel.illinois.edu

2 www.parallel.illinois.edu

Supercomputer Performance
Evolution

(Kogge et al.)

3 www.parallel.illinois.edu

Performance growths 1,000-fold
every 11 years

(Kogge et al.)

4 www.parallel.illinois.edu

Factors of Performance Growth

• Growth in clock rate

(Kogge et al.)

5 www.parallel.illinois.edu

Factors of Performance Growth

• Growth in number of processors

(Kogge et al.)

6 www.parallel.illinois.edu

Current Leader: Jaguar Cray XT5 at Oak Ridge

Number of cores 153,000

Peak performance 1.645 petaflops

System memory 362 terabytes

Disk space 10.7 petabytes

Disk bandwidth 200+ gigabytes/second

Power Megawatts

(Band)

7 www.parallel.illinois.edu

Science Applications on Jaguar

• Many of the
applications can
leverage exascale
performance and
more

• Use-driven science

Science
Area

Code Cores
Total

Performance

Materials DCA++ 150,144 1.3 PF*

Materials LSMS 149,580 1.05 PF

Seismology SPECFEM3D 149,784 165 TF

Weather WRF 150,000 50 TF

Climate POP 18,000
20 sim yrs/

day

Combustion S3D 144,000 83 TF

Fusion GTC 102,000
20 billion

Particles / sec

Materials LS3DF 147,456 442 TF

Chemistry NWChem 96,000 480 TF

Chemistry MADNESS 140,000 550+ TF

(Band)

8 www.parallel.illinois.edu

Toward Exascale

• Transistor density continues to increase
(Moore’s law)

– up to 2020 – 8 nm; not clear what happens
beyond

• Clock frequency does not increase

– Power barrier

• Increased performance comes only from
increased number of cores per chip, and
increased number of chips

9 www.parallel.illinois.edu

Exascale in 2020

• Extrapolation of current technology
– 100M- 1B threads

– 100-500 MWatts

• Energy consumption might be reduced one
order of magnitude with aggressive
technology and architecture change
– Low power cores (more cores)

– Aggressive voltage scaling (more errors)

– Aggressive DRAM redesign (less bandwidth)

10 www.parallel.illinois.edu

Challenges and Opportunities
Current power budget per
Tflop • Compute is 4% of power

budget

• “Other” is 90% (decode,
control … power supply,
cooling)

• Opportunities for special-
purpose architectures &
simplified processor design

(Borkar)

11 www.parallel.illinois.edu

Main Issues

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

11

12 www.parallel.illinois.edu

Blue Waters

• Petascale: sustained petaflop/s on complex
applications

– More than 200,000 cores

– More than 1 petabyte of memory

– More than 10 petabytes of user disk storage

– Half an exabyte of archival storage

– Up to 400 Gbps external connectivity

– IBM PERCS technology

13 www.parallel.illinois.edu

Managing with 1M-1B Threads

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

13

14 www.parallel.illinois.edu

Scaling Applications

• Weak scaling: use more powerful machine to
solve larger problem

– increase application size and keep running time
constant; e.g., refine grid

– Larger problem may not be of interest

– May want to scale time, not space (molecular
dynamics)

– Cannot scale space without scaling time (iterative
methods): granularity decreases and
communication increases

15 www.parallel.illinois.edu

Scaling Iterative Methods

• Assume that number of cores (and compute
power) are increased by factor of k4

• Space and time scales are refined by factor of
k

• Mesh size increased by factor of k×k×k

• Local cell dimension decreases by factor of k1/4

• Cell volume decreases by factor of k3/4 while
area decreases by factor of k2/4; area to
volume ratio (communication to computation
ratio) increases by factor of k3/2.

16 www.parallel.illinois.edu

Debugging and Tuning: Observing
1B Threads

• Scalable infrastructure to control and
instrument 1B threads

• Parallel information compression to identify
“anomalies”

• Need to ability to express “normality” (global
correctness and performance assertions)

17 www.parallel.illinois.edu

Main Issues

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

17

18 www.parallel.illinois.edu

Decreasing Mean Time to Failure

• Problem:
– More transistors
– Smaller transistors
– Lower voltage
– More manufacturing variance

• Current technology: global, synchronized checkpoint
• Future technology:

– Increased HW redundancy & error checking
• OK if number of components stays constant

– Integrated HW/SW/application approach for fault isolation and
local recovery
• Later probably needed if number of components per system

increases

19 www.parallel.illinois.edu

Main Issues

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

19

20 www.parallel.illinois.edu

Bulk Synchronous

• Many parallel applications are written in a “bulk-
synchronous style”: alternating stages of local
computation and global communication

• Models implicitly assumes that all processes
advance at the same compute speed

• Assumptions breaks down for an increasingly
large number of reasons
– Black Swans
– OS jitter
– Application jitter
– HW jitter

21 www.parallel.illinois.edu

Jitter Illustrated

(IBM)

OS jitter has been empirically measured to slow down

computations by a factor of 2 or more

22 www.parallel.illinois.edu

Jitter Causes
• Black Swans

– If each thread is unavailable (busy) for 1 msec once a
month, than most collective communications involving 1B
threads take > 1 msec (the black swan effect)

• OS jitter
– Background OS activities (daemons, heartbeats…)

• HW jitter
– Background error recovery activities (e.g., memory

scrubbing & error handling); power management;
management of manufacturing variability; degraded
operation modes

• Application jitter
– Input-dependent variability in computation intensity

• Need to move away from bulk model

23 www.parallel.illinois.edu

Possible Approaches

• User helped source code optimization
– Replace blocking communication (including collective

communication) with non blocking communication

– Refactoring tools help user make changes correctly

MPI_Barrier MPI_Barrier_start

….

MPI_Barrier_end

– Code between start—end should not conflict with
code at other processes not separated by full barrier

24 www.parallel.illinois.edu

Possible Approaches (2)

• Compiler optimizations (no change in source
code)

– execute “sends” as early as possible; execute
“receives” as late as possible

– tradeoff with communication aggregation

• Run-time optimization: virtualization

25 www.parallel.illinois.edu

Main Issues

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

25

26 www.parallel.illinois.edu

Task Virtualization
• Multiple logical tasks are scheduled on each physical

core; tasks are scheduled nonpreemptively; task
migration is supported

– Hides variance and communication latency

– Helps with scalability (decouples # tasks from #
cores)

– Helps with resiliency

– Needed for modularity (multiphysics/multiscale
codes – handling parallel coupling of modules)

– Improves performance (better locality)

– Scales (Charm++/AMPI)

– Can be implemented below MPI or PGAS
languages

26

27 www.parallel.illinois.edu

Task Virtualization Styles

• Varying, user controlled number of tasks (AMPI)

– Locality achieved by load balancer

• Recursive (hierarchical) range splitter (TBB)

– Method to split (recursively) problem in two sub-
problems

– Method to combine two sub-solutions

– Method to decide when sub-problem is small enough
tob e solved sequentially

– Method to solve sub-problem sequentially

– Locality is achieved implicitly
27

28 www.parallel.illinois.edu

Main Issues

• Increased parallelism

• Resiliency

• Variability

• Virtualization

• Hybrid HW

28

29 www.parallel.illinois.edu

Hybrid Communication

• Multiple levels of caches and of cache sharing
• Different communication models intra and inter node

– Coherent shared memory inside chip (node)
– rDMA (put/get/update) across nodes

• Hybrid features change every HW generation
• Need to be able to easily adjust number of cores & replace

inter-node communication with intra-node communication
• Easy to “downgrade” (use shared memory for message

passing); hard to “upgrade”; hence tend to use lowest
commonality (message passing)

• No good interoperability between shared memory (e.g.,
OpenMP) and message passing (MPI)

30 www.parallel.illinois.edu

Possible Directions

• Express cache oblivious algorithms using
recursive range splitting

– May provide 3 methods:

• Distributed memory splitting/merging

• Shared memory splitting/merging

• Sequential

• (Low hanging fruit) Enable shared memory
communication across MPI tasks

31 www.parallel.illinois.edu

Hybrid Computation

• Vector instructions

• Different core types

• Accelerators

• Can significantly reduce energy per flop

• Require (now) different source code

• Easy to compile CUDA to multicore; hard to
compile OpenMP to GPU

32 www.parallel.illinois.edu

Possible Approaches

• Use library auto-tuning

• Reduce semantic gap at architecture level; use
(static or dynamic) compilation

33 www.parallel.illinois.edu

Societal Changes in Supercomputing

• How would a supercomputer that costs >> $1B be
built and managed? An international consortium?

• How should access to such an expensive
apparatus be controlled? How does one ensure
efficient use?

• Should we have teams with more specialized
members (expert debugger; expert tuner; expert
modeler…)? Should we build tools for experts or
for the informed dilettante?

• What changes when “waiting” is not, anymore, a
strategy for getting more performance?

