| SYSTOR 2010

Scalability Limitations when RUni
Java Web Server on a Chip Multipi

Takeshi Ogasawara
IBM Research — Tokyo

© 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Summary of Talk

= We identified a performance scalability problem for a Java-based
Web server in a real chip multiprocessor (CMP) machine.

— Long-lived objects triggered long garbage collections (GCs)
— Long-lived objects is tightly linked with Web client connections

— Pause time of frequent long GC degrades the qualify of service
(QoS) and performance scalability on many threads.

= We evaluated object pooling to address this problem.

— Implemented object pools with thread-affinity-based selection
» Thread local or global

— Recycling these long-lived objects improved performance
scalability by 48% at 32 hardware threads

2 | © 2010 IBM Corporation

| IBM Research — Tokyo

Background

= The number of hardware threads on a chip
multiprocessor (CMP) is increasing in modern
Processors.

= |t is critical for a Web server to take advantage of the
numerous hardware threads to handle the increasing
demands for Web services from large numbers of
simultaneous clients.

= The performance of a Web server can scale well as
the number of hardware threads increases.

3 | © 2010 IBM Corporation

| IBM Research — Tokyo

@

Performance Scalability Problem of a Web Server in a CMP

= The throughput scaled poorly
as the number of hardware
threads was increased in a
CMP.

— Threads are not blocked
by resource contention.

= We believe that the increased
number of hardware threads
caused a change in the
behavior of the Web server
software.

Relative Performance

500%

400%

300%

200%

100%

0%

al

Ide
h

0

’
7
’
’
/7
Vi
7
’
’,
’
’
’
’
’,
’
7
7
’
’,
’

40% CPU idle
@32threads

7
’
’
4
’
7,
¥
v
v
Vi

0

4 8

12 16 20
H/W threads

24 28 32

© 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

QoS Failure Limited the Performance Scalability

= What is happening when additional threads do not improve the
throughput?

- QoS fallure — The frequencies of the responses that could not
meet the time criteria exceeded the limits.

— For a good server, most of the requests from Web clients
should be responded within a given time limit.

— For example, the QoS criteria specify that 95% of the total
requests must be responded within 3 seconds.

5 | © 2010 IBM Corporation

| IBM Research — Tokyo

Source of QoS Failures

= The number of responses that did
not meet the time limit periodically
increased.

= These spikes can be associated
with the spikes in the GC pause
time.

— Long GC pauses are a source
of QoS failures.

= Next question — Why did such
long GCs happen more often with
additional hardware threads?

[
T}
T
@

[]Page Requests [] Pass Count [] Fail Count [] Error Count

Time Limit Failures

iy
o

GC Pause (sec)

tal Bytes [Response Time ¢ns) [Time Good [[] Time Tolerable
ne Fail [Min Resp Time (ms) [| Max Resp Time ¢ms) [| Non-client Close

N

(o]

SPECweb_Ecommerce

.1555
P

1 | | I | ;li
ol | il

e | oy \ [
1,50 o \/,1 I\\.."""fl W '-/\,‘ L,H ""'\,-Lv." e ,-\:'.,-"',_ .A_.""I‘/

Execution Time

LIl |
b o e
¥, v A BB80R T

..LJ_A—J_

Execution Time

© 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Source of Long GCs

= Long GC pauses were caused by Full GCs.
— Full GC is one of two GC types (minor and full) in generational GC.
— Full GC happens when there is no free space for long-lived objects.

- Tg identify what objects are long-lived, we profiled the lifetimes and classes of
objects.

- Objects linked to the connections from clients were long-lived.

= To achieve better scalability, we should reduce the frequency of Full GCs by
reducing the number of allocations of long-lived objects.

7 | © 2010 IBM Corporation

| IBM Research — Tokyo

Object Pooling

= Conventional technology
= Not used for usual objects in modern JVMs
— Used in older JVMs to avoid slow allocations

— Can be used for recycling the OS resources (e.g., threads,
DB connections, etc.)

= We used object pooling to reduce the number of long-lived
objects.

[
T}
T
@

8 | © 2010 IBM Corporation

| IBM Research — Tokyo

Steps of Object Pools

1.

2.

3.

4.
S.

Profile the lifetimes of objects
Collect object allocations with their call stacks and their garbage-

collection

@

Find the objects that live long enough to be moved to the old space
We assume that objects surviving many minor GCs are long-lived.

Create a object pool for each class of the objects

Replace the code of ‘new’ with ‘getFromPool ()’

Thread-local pool or global pool

Insert ‘returnToPool ()’ when the objects are no longer used

Done by hand

© 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Pool

Thread Affinity of Pool Objects

= Thread affinity of a pool object — how ‘ >
Object

often the same thread obtains and

returns the pool objects
Thread

100% Affinity
= Thread affinity is important for good
performance and low memory footprint.

— For objects with high thread affinity, Pool
thread-local pools can avoid the cost of

thread synchronization.
— For objects with low thread affinity, ‘ >
global pools can avoid imbalance in Object™= = = = - Object

resource allocation among pools.
Thread A Thread B

0% Affinity

10 | © 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
L
@

Association between Object Lifetime and Thread Affinity

= Lifetime groups

— Long group Long lifetime
° AVg — 126 seconds 1.00E+12 A
* Linked to the connection @ R N
times of the Web users 3 , ‘HHHHH]
39 PHNENENHE N
FELTHHT
— Short group 0 % g Short lifetime
. — = yErnEEnnEnn
Avg. —< 1 usec o 8 o= NI
= o ML N NN R EH
o o £ oo INCHOC LY
= Association between the lifetime soneo LLL I IL I 1L B S0,
groups and the thread affinity Bbject Pool

— Long lifetime = <2% affinity
— Short lifetime 2 100% affinity

11 | © 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Experimental Environment

= A Java-based Web server
running on a CMP machine - 4

JSP Program: Ecommerce of SPECweb200

— A single JVM process
executes most of the S/W

Java Web/Servlet Server: WebSphere 6.1.0

stack. s
— A CMP machine provides Java VM: HotSpot server VM 1.5.0_11
32 hardware threads. 4
OS: Solaris Express 05/07
Y 4
HW: Sun Fire T2000 (32 hardware threadsI
Stack of H/W and S/W

12 | © 2010 IBM Corporation

| IBM Research — Tokyo

Reduced GC Pauses and QoS Failures

GC pause time (second)
[+}]

]
BT
Wi

6,500
6,000
5,500
5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500

]

— @GC Pauses

5P ECweh2005 Runtime Data (SPECweb_Ecommerce)

=Y -

* Time Limit Failures

A\
VAN L7

unt

lerable

nt Close

22— G@C Pauses — |

@

GC pause time (second)
(<]

5PECweh2005 Runtime Data (5PECweh_Ecommerce)
[Page Requ - -

[] Total Byte

[¥] Time Fail Time Lim

8,000

7,500
7,000
6,500
6,000
5,500
5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500

o

I

Lo»]

17:25:00J5T 17:30:00)ST 17:35:00JST 17:40:00)ST 17:45.00JST 17:50:00)5T 17:55:00)5T 18:00:00)5T

© 2010 IBM Corporation

| IBM Research — Tokyo

Improved Performance Scalability

Relative Performance

700%

600%

500%

400%

300%

200%

100%

0%

/

0

4 8 12 16 20 24 28 32
H/W threads

@ Pooling disabled o Pooling enabled

[
{IT]
L
@

© 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
L
@

Conclusions

= We analyzed a scalability problem for a Java-based Web server
in a real CMP machine.

— Long-lived objects triggered long GCs that degrade the QoS.

— The clients’ activities are tightly linked with the lifetimes of
such objects.

= We evaluated object pooling to address this problem.
— Object pools with thread-affinity-based selection

— Recycling these long-lived objects improved the scalability by
48%

15 | © 2010 IBM Corporation

| IBM Research — Tokyo

[
{IT]
L
@

Backup

16 | © 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Source of Long GCs

= Long GC pauses were caused by Full GCs.
— Full GC is one of two GC types (minor and full) in generational GC.
— Full GC happens when there is no free space for long-lived objects.

- Tgl identify what objects are long-lived, we profiled the lifetimes and classes of
objects.

- Objects that are linked to the connections from clients were long-lived.

= These objects will be observed in any server because they are independent of the
internal design of a server.

= To achieve better scalability, we should reduce the frequency of Full GCs by
reducing the number of allocations of long-lived objects.

17 | © 2010 IBM Corporation

[
@

| IBM Research — Tokyo

Another Reason of Reducing the GC Count —
GC Scales Poorly ina CMP

= We have more live objects that GC scans & copies
with more exec units in a CMP.

= However, the scalability is limited because GC is
memory-bound work.

Down t
only 1/

Hardware Threads Hardware Threads

Doewn-{o
nly 1/

Full GC Pause

Minor GC Pause

18 | © 2010 IBM Corporation

| IBM Research — Tokyo

Reuse Ratio of Pool Objects

= Very high

—>94% on average

19 | © 2010 IBM Corporation

| IBM Research — Tokyo

[
T}
T
@

Other Approach — Mostly-Concurrent Mark-and-Sweep

(CMS) Collector

= The CMS collector intends to
reduce the GC pause time for

Full GCs by running a

collector thread concurrently.

= The QoS and the throughput
were degraded.

— The pause time for Full
GCs were reduced.

— But another pause (initial
mark pause) was added.

Q

[]|Page Requests
[] Total Bytes
Time Fail

7,500
7,000
6,500
6,000
5,500
5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

0 A

| |H
'| ‘| ||
| i._\,v, S \ \i

SPECweh2005
[]Pass Cou
[]Response
[IMin Resp Time ¢ms) [Max Resp Time ¢(ms) [|Non

nt

Funtime Data (SPECwebh_Ecommerce)

[] Fail Count

Time ¢ms) [| Time Good

SPECweb_Ecommerce

WAL

||
‘{

|||| ‘
J"l

‘| |\|
J, |1 uH

‘M 8 "h |
I 'L' LU
JiLl UK IJ

[] Error Count
[] Time Tolerable
-client Close

RIWSLINLS

15:50:00 ST 15:55:00J5T 16:00:00J5T 16:05:00 8T 16:10:00)5T 16:15:00)5T 16:20:00J5T

More QoS failures ®

© 2010 IBM Corporation

