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Summary of Talk

= We identified a performance scalability problem for a Java-based
Web server in a real chip multiprocessor (CMP) machine.

— Long-lived objects triggered long garbage collections (GCs)
— Long-lived objects is tightly linked with Web client connections

— Pause time of frequent long GC degrades the qualify of service
(QoS) and performance scalability on many threads.

= We evaluated object pooling to address this problem.

— Implemented object pools with thread-affinity-based selection
» Thread local or global

— Recycling these long-lived objects improved performance
scalability by 48% at 32 hardware threads
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Background

= The number of hardware threads on a chip
multiprocessor (CMP) is increasing in modern
Processors.

= |t is critical for a Web server to take advantage of the
numerous hardware threads to handle the increasing
demands for Web services from large numbers of
simultaneous clients.

= The performance of a Web server can scale well as
the number of hardware threads increases.
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Performance Scalability Problem of a Web Server in a CMP

= The throughput scaled poorly
as the number of hardware
threads was increased in a
CMP.

— Threads are not blocked
by resource contention.

= We believe that the increased
number of hardware threads
caused a change in the
behavior of the Web server
software.
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QoS Failure Limited the Performance Scalability

= What is happening when additional threads do not improve the
throughput?

- QoS fallure — The frequencies of the responses that could not
meet the time criteria exceeded the limits.

— For a good server, most of the requests from Web clients
should be responded within a given time limit.

— For example, the QoS criteria specify that 95% of the total
requests must be responded within 3 seconds.
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Source of QoS Failures

= The number of responses that did
not meet the time limit periodically
increased.

= These spikes can be associated
with the spikes in the GC pause
time.

— Long GC pauses are a source
of QoS failures.

= Next question — Why did such
long GCs happen more often with
additional hardware threads?
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Source of Long GCs

= Long GC pauses were caused by Full GCs.
— Full GC is one of two GC types (minor and full) in generational GC.
— Full GC happens when there is no free space for long-lived objects.

- Tg identify what objects are long-lived, we profiled the lifetimes and classes of
objects.

- Objects linked to the connections from clients were long-lived.

= To achieve better scalability, we should reduce the frequency of Full GCs by
reducing the number of allocations of long-lived objects.

7 | © 2010 IBM Corporation



| IBM Research — Tokyo

Object Pooling

= Conventional technology
= Not used for usual objects in modern JVMs
— Used in older JVMs to avoid slow allocations

— Can be used for recycling the OS resources (e.g., threads,
DB connections, etc.)

= We used object pooling to reduce the number of long-lived
objects.
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Steps of Object Pools

1.

2.

3.

4.
S.

Profile the lifetimes of objects
Collect object allocations with their call stacks and their garbage-

collection

@

Find the objects that live long enough to be moved to the old space
We assume that objects surviving many minor GCs are long-lived.

Create a object pool for each class of the objects

Replace the code of ‘new’ with ‘getFromPool ()’

Thread-local pool or global pool

Insert ‘returnToPool ()’ when the objects are no longer used

Done by hand
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Pool

Thread Affinity of Pool Objects

= Thread affinity of a pool object — how ‘ >
Object

often the same thread obtains and

returns the pool objects
Thread

100% Affinity
= Thread affinity is important for good
performance and low memory footprint.

— For objects with high thread affinity, Pool
thread-local pools can avoid the cost of

thread synchronization.
— For objects with low thread affinity, ‘ >
global pools can avoid imbalance in Object™= = = = - Object

resource allocation among pools.
Thread A Thread B

0% Affinity
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Association between Object Lifetime and Thread Affinity

= Lifetime groups

— Long group Long lifetime
° AVg — 126 seconds 1.00E+12 A
* Linked to the connection @ R N
times of the Web users 3 , ‘HHHHH]
39 PHNENENHE N
FELTHHT
— Short group 0 % g Short lifetime
. — = yErnEEnnEnn
Avg. —< 1 usec o 8 o= NI
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o o £ oo INCHOC LY
= Association between the lifetime soneo LLL I IL I 1L B S0,
groups and the thread affinity Bbject Pool

— Long lifetime = <2% affinity
— Short lifetime 2 100% affinity
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Experimental Environment

= A Java-based Web server
running on a CMP machine - 4

JSP Program: Ecommerce of SPECweb200

— A single JVM process
executes most of the S/W

Java Web/Servlet Server: WebSphere 6.1.0

stack. s
— A CMP machine provides Java VM: HotSpot server VM 1.5.0_11
32 hardware threads. 4
OS: Solaris Express 05/07
Y 4
HW: Sun Fire T2000 (32 hardware threadsI
Stack of H/W and S/W
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Reduced GC Pauses and QoS Failures
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Improved Performance Scalability

Relative Performance
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Conclusions

= We analyzed a scalability problem for a Java-based Web server
in a real CMP machine.

— Long-lived objects triggered long GCs that degrade the QoS.

— The clients’ activities are tightly linked with the lifetimes of
such objects.

= We evaluated object pooling to address this problem.
— Object pools with thread-affinity-based selection

— Recycling these long-lived objects improved the scalability by
48%
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Backup
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Source of Long GCs

= Long GC pauses were caused by Full GCs.
— Full GC is one of two GC types (minor and full) in generational GC.
— Full GC happens when there is no free space for long-lived objects.

- Tgl identify what objects are long-lived, we profiled the lifetimes and classes of
objects.

- Objects that are linked to the connections from clients were long-lived.

= These objects will be observed in any server because they are independent of the
internal design of a server.

= To achieve better scalability, we should reduce the frequency of Full GCs by
reducing the number of allocations of long-lived objects.
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Another Reason of Reducing the GC Count —
GC Scales Poorly ina CMP

= We have more live objects that GC scans & copies
with more exec units in a CMP.

= However, the scalability is limited because GC is
memory-bound work.

Down t
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Hardware Threads Hardware Threads
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Reuse Ratio of Pool Objects

= Very high

—>94% on average
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Other Approach — Mostly-Concurrent Mark-and-Sweep

(CMS) Collector

= The CMS collector intends to
reduce the GC pause time for

Full GCs by running a

collector thread concurrently.

= The QoS and the throughput
were degraded.

— The pause time for Full
GCs were reduced.

— But another pause (initial
mark pause) was added.
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