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UnDistributed Enterprise Storage
(What I Won’t Talk About Today)
• Expensive
• Needs to be replaced to 

scale up
• Direct fiber access

– But trouble if multiple 
machines access same data

– Use server (bottleneck)
or High-Availability Cluster

• Maybe bullet-proof
– But single-point-of-failure 
– Get Disaster Recovery solution
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Alternatives to Enterprise Storage
(I’ll Talk About Today)
1. Distributed Storage 

Made up of many cheap, low-reliability
storage nodes

– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure 

reliability and consistency?

Google’s 1st server
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A Short Introduction to
Reliable Distributed Storage

Chockler, Guerraoui, Keidar, Vukolic: 
Reliable Distributed Storage, IEEE Computer 2009



Distributed Storage Architecture

Cloud 
Storage

LAN/ WAN

Storage Nodes (Servers)

Storage Clients
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Dynamic, 
Fault-prone

Fault-prone

readwrite

“Faults are the norm, not the exception”



Getting Fault-Tolerance

• Replication
– Multiple copies (e.g., 3) of each data item
– Copies on distinct storage nodes

• Disaster recovery
– Copies geographically dispersed
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Consistency

• Need to ensure that updates are reflected 
consistently in all copies

• Consistency means atomic operations

• Need Replica Coordination!
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Storage Service

read x

Should return 
“Cameron”

write x 
“Cameron”



A Case for Data-Centric
Replica Coordination
• Client-side code runs coordination logic

– Communicates with multiple storage nodes
– May be in middleware tier

• Simple storage nodes (servers)
– Can be network-attached disks 
 Not necessarily PCs with disks

– Simply respond to client requests
 High throughput

– Do not communicate with each other
 No scalability limit 
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not-so-thin
client

thin 
storage 

node



High Availability and Asynchrony

• Replication allows for high availability 
• Client operations do not need to wait for 

all replicas
• Asynchronous communication
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Delay on 
network
or device



Two Copies Are Not Enough
With Asynchronous Communication

• Need to access a majority of copies
– Service availability: when < half the copies fail
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X = “Cameron” X = “Brown”

read x

Returns 
“Brown”!

write x 
“Cameron”



A Simple Reliable Distributed 
Storage Algorithm
• A-la ABD [Attiya, Bar-Noy, Dolev JACM 1995]
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X = “Cameron”, 2
X = “Brown”, 1

write x 
“Cameron”

read x

X = “Cameron”, 2
X = “Brown”, 1 X = “Brown”, 1

Store timestamp
with data

Store timestamp
with data

Store sequence#
with data

Contact 3 storage nodes holding copies 
of x, wait for 2 to respond



A Simple Reliable Distributed 
Storage Algorithm (Cont’d)
• Need to read before writing 

– To choose sequence#

• May need to write-back after reading
– So next reader doesn’t see older value (see paper)
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Read phase Write (-back) phase



Many Variants and Extensions 
in The Literature
• Implementations, system optimizations

– FAB (HP Labs), Ursa Minor (CMU)
– May use erasure-coding instead of full replicas 

to reduce storage blow-up

• Tolerating malicious faults, bugs, 
“Byzantine” faults
Malkhi, Reiter: Byzantine Quorum Systems 
Abraham, Chockler, Keidar, Malkhi: Byzantine Disk Paxos

…
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Outline

1. Distributed Storage 
Made up of many cheap, low-reliability 

storage nodes
– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure 

integrity and consistency?
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Dynamic (Reconfigurable)
Distributed Storage

Aguilera, Keidar , Malkhi, Shraer: 
Dynamic Atomic Storage Without Consensus, PODC’09

Shraer, Martin, Malkhi, Keidar: 
Data-Centric Reconfiguration with 

Network-Attached Disks



Real Systems Are Dynamic
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LAN/ WAN

reconfig
{–A, –B}

A

B C
D

E

reconfig {–C, +F,…, +I}  

F

G

I

H

Reconfiguration essential for long-term availability
The challenge: maintain consistency, reliability



Pitfall of Naïve Reconfiguration 
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A

B

C

D{A, B, C, D}

{A, B, C, D}
{A, B, C, D}

{A, B, C, D}

{A, B, C, D}

{A, B, C, D}

{A, B, C, D, E}

{A, B, C}

{A, B, C, D, E}

{A, B, C, D, E}

{A, B, C}

{A, B, C}

E

reconfig {+E}

reconfig {-D}

{A, B, C, D, E}



Returns 
“Brown”!

Pitfall of Naïve Reconfiguration 
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A

B

C

D{A, B, C, D, E}

{A, B, C}

{A, B, C, D, E}

{A, B, C, D, E}

{A, B, C}

{A, B, C}

E

write x “Cameron”

read x

{A, B, C, D, E}

X = Brown”, 1

X = “Brown”, 1

X = “Cameron”, 2

X = “Cameron”, 2

X = “Cameron”, 2

Shown in [Yeger-Lotem, Keidar, Dolev, PODC’97]

X = “Brown”, 1

X = “Brown”, 1

X = “Brown”, 1



Reconfiguration Option 1: 
Centralized 

• Can be automatic 
– E.g., Ursa Minor [Abd-El-Malek et al., FAST 05]

• Single point of failure
– What if manager crashes while changing the system?

• Downtime
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Tomorrow Technion servers will be down 
for maintenance from 5:30am to 6:45am

Virtually Yours,
Moshe Barak



Reconfiguration Option 2: 
Distributed Agreement
• Initiator requests agreement on reconfiguration 

from other storage nodes
– Not data-centric

• Use consensus abstraction
– Each node provides an input, 

all non-crashed nodes decide on the same output 
(one of the inputs)

• In theory, might never terminate [FLP85]
• In practice, we have partial synchrony so it 

usually works 
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A Theoretical Note

• This project started by trying to prove it
• To this end, we looked for a specification of 

service availability

Static
(No Reconfiguration)

Dynamic
Reconfiguration

Consensus Need partial synchrony
[FLP85]

Partial synchrony

Atomic 
read/write 
object

Asynchronous solution 
[ABD95]

?
Partial synchrony 
believed necessary 
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Problem with Typical Specs of 
Dynamic Systems’ Availability

Works if: Partial synchrony & 
All the majorities our algorithm uses at any 
given point in time are available



Service Progress Specs
• Current config – at first, initial config
• Faulty(t) – nodes that crashed by time t
• Tracking changes due to reconfig

Condition for service availability: 
At any time t, fewer than |Current(t)|/2 nodes
from Current(t) 
are in Faulty(t)
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∪ AddPending(t) 
∪ RemovePending(t)

Dynamic

reconfig {-C,+D} return ACK

C is in RemovePending
D is in AddPending C is out of Current

D is in Current



Dynamic Progress Specs: 
A Broader Look

• The specification is problem-independent
– We used it for a read/write storage service
– It would be interesting to use it for other 

dynamic (reconfigurable) services

• We show that the progress condition is 
sufficient 
– Is it also necessary?
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Reconfiguration Option 3: 
DynaStore
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• Satisfy new definition of dynamic service 
availability

• 1st data-centric distributed reconfiguration
– With thin storage nodes 

• Is partial synchrony (consensus) 
necessary?



Tracking Evolving Config’s

• With consensus: agree on next reconfig

– Stored at storage nodes

• Without consensus:
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A, B, C A,B,C,D
+D − C

A,B

A, B, D

A, B, C

+D

+D − C

− C

A,B,C,D

A, B, D

Inconsistent 
updates 
later found 
and merged



update( {+D} )

update( {-C} )

Tracking Config’s in DynaStore

• NextViews – Weak Snapshot object
– Supports update() and scan()
– All non-empty scans intersect
– Asynchronous data-centric implementation (see papers)
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A,B

A, B, C
+D

− C

A,B,C,D
NextViews

scan() returns {+D, -C}

scan() returns {+D}



A              Reliable Distributed 
Storage Algorithm

• If scan() finds multiple (concurrent) 
updates – read/write in all
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Read phase Write (-back) phase

Dynamic
(DynaStore)

Find 
updates

Find 
updates

scan() scan()

If  new update(s)
found, repeat



Consensus-Free Reconfiguration
• It’s possible!

– Dynamic read/write objects “easier” than consensus
– Works where consensus might not terminate

• But should you do it??
• We experimented to

find out…. 
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Just because you can do it doesn’t mean you should



The Stronger Progress 
Guarantees Are Not For Free
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Consensus-based

Asynchronous

0

100

200

300

400

500

600

0 1 2 5ms.

Number of simultaneous reconfig operations

Average write latency

Asynchronous 
reconfig’s
slow down 
read/write

Normal latency (no 
reconfigurations) 

is the same  



Reconfiguration Takeaways
• Reconfiguration is subtle
• Clean service availability definition enables 

reasoning
• Data-centric distributed reconfiguration is 

possible with no down time 
• Theoretical angle: 

Dynamism per se does not necessitate 
agreement

• Practical implication: 
Works in more circumstances → more robust

– But, at a cost
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Outline

1. Distributed Storage 
Made up of many cheap, low-reliability 

storage nodes
– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure 

reliability and consistency?
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Can We Trust The Cloud 
With Reliability & Consistency?

Sorftware bugs, hardware malfunction, 
network partition, misconfiguration, 
hacker attack, 
provider outsources  to save money, .... 
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Amazon S3, 2008, silent data corruption: 

“We’ve isolated this issue to a single load balancer … 
under load, it was corrupting single bytes in the byte stream...”

Cachin, Keidar, Shraer: Trusting the Cloud, SIGACT News 2009



Verification for Untrusted 
Cloud Storage

Cachin, Keidar, Shraer:
Fail-Aware Untrusted Storage, DSN’09

Shraer, Cachin, Cidon, Keidar, Michalevsky, Shaket:
Venus: Verification for Untrusted Cloud Storage



Our Goal
Guarantee reliability and consistency

to users of cloud storage 
& detect failures
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Strong Consistency?

• Impossible to guarantee strong consistency
– Unless clients communicate directly to complete each 

operation…

• What can be guaranteed ?
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X= X=write (X, “Cameron”)

X = Brown

“Cameron” “Brown”

ACKwrite x 
“Cameron”

read x



Eventual Consistency Semantics

• Client operations complete optimistically
• Client notified when its operation is known to be 

consistent
– But may invoke other operations without waiting for 

these notifications

• Semantics provided by distributed storage
– Bayou (SOSP’95)
– Today in commercial systems, e.g., Amazon’s 

Dynamo (SOSP’07)

• Resembles Futures, Promises, etc.
– Future<T>: result of an asynchronous computation
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Venus Design Principles

1. Defenses should not affect normal case
– Never block when storage is correct

2. Provide simple, meaningful semantics
– Eventual consistency
– Fail awareness – clients learn of every 

consistency violation

3. Deploy on standard cloud storage
– Our experiments use Amazon S3
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Venus Architecture
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Commodity Storage Service

Verifier

Venus 
client-side

library

Verfier may be 
hosted on cloud

Verfier may 
reside on LAN



Venus Availability

• Operations complete (optimistically) 
whenever the cloud is online

• Consistency notifications depend on other clients
• Clients may crash, disconnect, but
• Some clients are designated as “core” set
Condition for availability: 

Fewer than half the core set clients
permanently crash



Venus Basics

• Read/write data on commodity storage
• Store meta-data (context info) on verifier

– Parallelized with data access

• Operations complete optimistically
• Become green when consistent context 

info is collected from majority of core set
– Periodically retrieve context info from verifier

• If no new info for too long, contact other clients
• If context is inconsistent, report error
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Did core 
set 

clients 
observe 
my op as 
I did ?



Toolbox
• Clients sign all messages

– server can’t forge operations, just reorder & hide
• Representation of operation context (V, M):

– V - vector clock
– M - vector of aggregate history hashes

• If op1 is the last operation of client k that op2 observes,
k-th entry stores hash of the history op2 is expected to have

• (V, M) pairs compared to determine if two ops 
are consistent

• Under the hood - “weak fork” consistency
– Key to being non-blocking

• 12-Page correctness proof
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Venus for Amazon S3 vs. Raw S3
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Conclusions: Distributed Storage
• There are alternatives to enterprise storage

– Built from cheap components  
or pay-as-you-go cloud storage

• There are challenges
– Fault-tolerance
– Consistency
– Availability

• But there are also solutions
– I covered only a few of them today

• Early adopters: companies with big data centers
• Will they become mainstream?
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Computing Predictions &Trends
• In 1950s Asimov stories:

– Multivac supercomputer, 100 sq. miles
• Mocked for decades

– As ICs became smaller and smaller
• And now?
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Thanks!
Alex Shraer

Marcos Aguilera, Christian Cachin, 
Asaf Cidon, Gregory Chockler, 
Rachid Guerraoui, Dahlia Malkhi, 
J-P. Martin, Yan Michalevsky, 
Dani Shaket, Marko Vukolic

http://webee.technion.ac.il/~idish
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