
Reliable Distributed Storage
A Research Perspective

Idit Keidar
Technion

UnDistributed Enterprise Storage
(What I Won’t Talk About Today)
• Expensive
• Needs to be replaced to

scale up
• Direct fiber access

– But trouble if multiple
machines access same data

– Use server (bottleneck)
or High-Availability Cluster

• Maybe bullet-proof
– But single-point-of-failure
– Get Disaster Recovery solution

Idit Keidar SYSTOR'10 2

Alternatives to Enterprise Storage
(I’ll Talk About Today)
1. Distributed Storage

Made up of many cheap, low-reliability
storage nodes

– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure

reliability and consistency?

Google’s 1st server

Idit Keidar SYSTOR'10 3

A Short Introduction to
Reliable Distributed Storage

Chockler, Guerraoui, Keidar, Vukolic:
Reliable Distributed Storage, IEEE Computer 2009

Distributed Storage Architecture

Cloud
Storage

LAN/ WAN

Storage Nodes (Servers)

Storage Clients

Idit Keidar SYSTOR'10 5

Dynamic,
Fault-prone

Fault-prone

readwrite

“Faults are the norm, not the exception”

Getting Fault-Tolerance

• Replication
– Multiple copies (e.g., 3) of each data item
– Copies on distinct storage nodes

• Disaster recovery
– Copies geographically dispersed

Idit Keidar SYSTOR'10 6

Consistency

• Need to ensure that updates are reflected
consistently in all copies

• Consistency means atomic operations

• Need Replica Coordination!
Idit Keidar SYSTOR'10 7

Storage Service

read x

Should return
“Cameron”

write x
“Cameron”

A Case for Data-Centric
Replica Coordination
• Client-side code runs coordination logic

– Communicates with multiple storage nodes
– May be in middleware tier

• Simple storage nodes (servers)
– Can be network-attached disks
 Not necessarily PCs with disks

– Simply respond to client requests
 High throughput

– Do not communicate with each other
 No scalability limit

Idit Keidar SYSTOR'10 8

not-so-thin
client

thin
storage

node

High Availability and Asynchrony

• Replication allows for high availability
• Client operations do not need to wait for

all replicas
• Asynchronous communication

Idit Keidar SYSTOR'10 9

Delay on
network
or device

Two Copies Are Not Enough
With Asynchronous Communication

• Need to access a majority of copies
– Service availability: when < half the copies fail

Idit Keidar SYSTOR'10 10

X = “Cameron” X = “Brown”

read x

Returns
“Brown”!

write x
“Cameron”

A Simple Reliable Distributed
Storage Algorithm
• A-la ABD [Attiya, Bar-Noy, Dolev JACM 1995]

Idit Keidar SYSTOR'10 11

X = “Cameron”, 2
X = “Brown”, 1

write x
“Cameron”

read x

X = “Cameron”, 2
X = “Brown”, 1 X = “Brown”, 1

Store timestamp
with data

Store timestamp
with data

Store sequence#
with data

Contact 3 storage nodes holding copies
of x, wait for 2 to respond

A Simple Reliable Distributed
Storage Algorithm (Cont’d)
• Need to read before writing

– To choose sequence#

• May need to write-back after reading
– So next reader doesn’t see older value (see paper)

Idit Keidar SYSTOR'10 12

Read phase Write (-back) phase

Many Variants and Extensions
in The Literature
• Implementations, system optimizations

– FAB (HP Labs), Ursa Minor (CMU)
– May use erasure-coding instead of full replicas

to reduce storage blow-up

• Tolerating malicious faults, bugs,
“Byzantine” faults
Malkhi, Reiter: Byzantine Quorum Systems
Abraham, Chockler, Keidar, Malkhi: Byzantine Disk Paxos

…

Idit Keidar SYSTOR'10 13

Outline

1. Distributed Storage
Made up of many cheap, low-reliability

storage nodes
– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure

integrity and consistency?

Idit Keidar SYSTOR'10 14

Dynamic (Reconfigurable)
Distributed Storage

Aguilera, Keidar , Malkhi, Shraer:
Dynamic Atomic Storage Without Consensus, PODC’09

Shraer, Martin, Malkhi, Keidar:
Data-Centric Reconfiguration with

Network-Attached Disks

Real Systems Are Dynamic

Idit Keidar SYSTOR'10 16

LAN/ WAN

reconfig
{–A, –B}

A

B C
D

E

reconfig {–C, +F,…, +I}

F

G

I

H

Reconfiguration essential for long-term availability
The challenge: maintain consistency, reliability

Pitfall of Naïve Reconfiguration

Idit Keidar SYSTOR'10 17

A

B

C

D{A, B, C, D}

{A, B, C, D}
{A, B, C, D}

{A, B, C, D}

{A, B, C, D}

{A, B, C, D}

{A, B, C, D, E}

{A, B, C}

{A, B, C, D, E}

{A, B, C, D, E}

{A, B, C}

{A, B, C}

E

reconfig {+E}

reconfig {-D}

{A, B, C, D, E}

Returns
“Brown”!

Pitfall of Naïve Reconfiguration

Idit Keidar SYSTOR'10 18

A

B

C

D{A, B, C, D, E}

{A, B, C}

{A, B, C, D, E}

{A, B, C, D, E}

{A, B, C}

{A, B, C}

E

write x “Cameron”

read x

{A, B, C, D, E}

X = Brown”, 1

X = “Brown”, 1

X = “Cameron”, 2

X = “Cameron”, 2

X = “Cameron”, 2

Shown in [Yeger-Lotem, Keidar, Dolev, PODC’97]

X = “Brown”, 1

X = “Brown”, 1

X = “Brown”, 1

Reconfiguration Option 1:
Centralized

• Can be automatic
– E.g., Ursa Minor [Abd-El-Malek et al., FAST 05]

• Single point of failure
– What if manager crashes while changing the system?

• Downtime
Idit Keidar SYSTOR'10 19

Tomorrow Technion servers will be down
for maintenance from 5:30am to 6:45am

Virtually Yours,
Moshe Barak

Reconfiguration Option 2:
Distributed Agreement
• Initiator requests agreement on reconfiguration

from other storage nodes
– Not data-centric

• Use consensus abstraction
– Each node provides an input,

all non-crashed nodes decide on the same output
(one of the inputs)

• In theory, might never terminate [FLP85]
• In practice, we have partial synchrony so it

usually works

Idit Keidar SYSTOR'10 20

A Theoretical Note

• This project started by trying to prove it
• To this end, we looked for a specification of

service availability

Static
(No Reconfiguration)

Dynamic
Reconfiguration

Consensus Need partial synchrony
[FLP85]

Partial synchrony

Atomic
read/write
object

Asynchronous solution
[ABD95]

?
Partial synchrony
believed necessary

Idit Keidar SYSTOR'10 21

Problem with Typical Specs of
Dynamic Systems’ Availability

Works if: Partial synchrony &
All the majorities our algorithm uses at any
given point in time are available

Service Progress Specs
• Current config – at first, initial config
• Faulty(t) – nodes that crashed by time t
• Tracking changes due to reconfig

Condition for service availability:
At any time t, fewer than |Current(t)|/2 nodes
from Current(t)
are in Faulty(t)

Idit Keidar SYSTOR'10 23

∪ AddPending(t)
∪ RemovePending(t)

Dynamic

reconfig {-C,+D} return ACK

C is in RemovePending
D is in AddPending C is out of Current

D is in Current

Dynamic Progress Specs:
A Broader Look

• The specification is problem-independent
– We used it for a read/write storage service
– It would be interesting to use it for other

dynamic (reconfigurable) services

• We show that the progress condition is
sufficient
– Is it also necessary?

Idit Keidar SYSTOR'10 24

Reconfiguration Option 3:
DynaStore

Idit Keidar SYSTOR'10 25

• Satisfy new definition of dynamic service
availability

• 1st data-centric distributed reconfiguration
– With thin storage nodes

• Is partial synchrony (consensus)
necessary?

Tracking Evolving Config’s

• With consensus: agree on next reconfig

– Stored at storage nodes

• Without consensus:

Idit Keidar SYSTOR'10 26

A, B, C A,B,C,D
+D − C

A,B

A, B, D

A, B, C

+D

+D − C

− C

A,B,C,D

A, B, D

Inconsistent
updates
later found
and merged

update({+D})

update({-C})

Tracking Config’s in DynaStore

• NextViews – Weak Snapshot object
– Supports update() and scan()
– All non-empty scans intersect
– Asynchronous data-centric implementation (see papers)

Idit Keidar SYSTOR'10 27

A,B

A, B, C
+D

− C

A,B,C,D
NextViews

scan() returns {+D, -C}

scan() returns {+D}

A Reliable Distributed
Storage Algorithm

• If scan() finds multiple (concurrent)
updates – read/write in all

Idit Keidar SYSTOR'10 28

Read phase Write (-back) phase

Dynamic
(DynaStore)

Find
updates

Find
updates

scan() scan()

If new update(s)
found, repeat

Consensus-Free Reconfiguration
• It’s possible!

– Dynamic read/write objects “easier” than consensus
– Works where consensus might not terminate

• But should you do it??
• We experimented to

find out….

Idit Keidar SYSTOR'10 29
Just because you can do it doesn’t mean you should

The Stronger Progress
Guarantees Are Not For Free

Idit Keidar SYSTOR'10 30

Consensus-based

Asynchronous

0

100

200

300

400

500

600

0 1 2 5ms.

Number of simultaneous reconfig operations

Average write latency

Asynchronous
reconfig’s
slow down
read/write

Normal latency (no
reconfigurations)

is the same

Reconfiguration Takeaways
• Reconfiguration is subtle
• Clean service availability definition enables

reasoning
• Data-centric distributed reconfiguration is

possible with no down time
• Theoretical angle:

Dynamism per se does not necessitate
agreement

• Practical implication:
Works in more circumstances → more robust

– But, at a cost
Idit Keidar SYSTOR'10 31

Outline

1. Distributed Storage
Made up of many cheap, low-reliability

storage nodes
– Achieving reliability, consistency
– The reconfiguration challenge

2. Cloud Storage
– Can we trust the cloud to ensure

reliability and consistency?

Idit Keidar SYSTOR'10 32

Can We Trust The Cloud
With Reliability & Consistency?

Sorftware bugs, hardware malfunction,
network partition, misconfiguration,
hacker attack,
provider outsources to save money,

Idit Keidar SYSTOR'10 33

Amazon S3, 2008, silent data corruption:

“We’ve isolated this issue to a single load balancer …
under load, it was corrupting single bytes in the byte stream...”

Cachin, Keidar, Shraer: Trusting the Cloud, SIGACT News 2009

Verification for Untrusted
Cloud Storage

Cachin, Keidar, Shraer:
Fail-Aware Untrusted Storage, DSN’09

Shraer, Cachin, Cidon, Keidar, Michalevsky, Shaket:
Venus: Verification for Untrusted Cloud Storage

Our Goal
Guarantee reliability and consistency

to users of cloud storage
& detect failures

Idit Keidar SYSTOR'10 35

Strong Consistency?

• Impossible to guarantee strong consistency
– Unless clients communicate directly to complete each

operation…

• What can be guaranteed ?

Idit Keidar SYSTOR'10 36

X= X=write (X, “Cameron”)

X = Brown

“Cameron” “Brown”

ACKwrite x
“Cameron”

read x

Eventual Consistency Semantics

• Client operations complete optimistically
• Client notified when its operation is known to be

consistent
– But may invoke other operations without waiting for

these notifications

• Semantics provided by distributed storage
– Bayou (SOSP’95)
– Today in commercial systems, e.g., Amazon’s

Dynamo (SOSP’07)

• Resembles Futures, Promises, etc.
– Future<T>: result of an asynchronous computation

Idit Keidar SYSTOR'10 37

Venus Design Principles

1. Defenses should not affect normal case
– Never block when storage is correct

2. Provide simple, meaningful semantics
– Eventual consistency
– Fail awareness – clients learn of every

consistency violation

3. Deploy on standard cloud storage
– Our experiments use Amazon S3

Idit Keidar SYSTOR'10 38

Venus Architecture

Idit Keidar SYSTOR'10 39

Commodity Storage Service

Verifier

Venus
client-side

library

Verfier may be
hosted on cloud

Verfier may
reside on LAN

Venus Availability

• Operations complete (optimistically)
whenever the cloud is online

• Consistency notifications depend on other clients
• Clients may crash, disconnect, but
• Some clients are designated as “core” set
Condition for availability:

Fewer than half the core set clients
permanently crash

Venus Basics

• Read/write data on commodity storage
• Store meta-data (context info) on verifier

– Parallelized with data access

• Operations complete optimistically
• Become green when consistent context

info is collected from majority of core set
– Periodically retrieve context info from verifier

• If no new info for too long, contact other clients
• If context is inconsistent, report error

Idit Keidar SYSTOR'10 41

Did core
set

clients
observe
my op as
I did ?

Toolbox
• Clients sign all messages

– server can’t forge operations, just reorder & hide
• Representation of operation context (V, M):

– V - vector clock
– M - vector of aggregate history hashes

• If op1 is the last operation of client k that op2 observes,
k-th entry stores hash of the history op2 is expected to have

• (V, M) pairs compared to determine if two ops
are consistent

• Under the hood - “weak fork” consistency
– Key to being non-blocking

• 12-Page correctness proof
Idit Keidar SYSTOR'10 42

Venus for Amazon S3 vs. Raw S3

Idit Keidar SYSTOR'10 43

Conclusions: Distributed Storage
• There are alternatives to enterprise storage

– Built from cheap components
or pay-as-you-go cloud storage

• There are challenges
– Fault-tolerance
– Consistency
– Availability

• But there are also solutions
– I covered only a few of them today

• Early adopters: companies with big data centers
• Will they become mainstream?

Idit Keidar SYSTOR'10 44

Computing Predictions &Trends
• In 1950s Asimov stories:

– Multivac supercomputer, 100 sq. miles
• Mocked for decades

– As ICs became smaller and smaller
• And now?

Idit Keidar SYSTOR'10 45

Thanks!
Alex Shraer

Marcos Aguilera, Christian Cachin,
Asaf Cidon, Gregory Chockler,
Rachid Guerraoui, Dahlia Malkhi,
J-P. Martin, Yan Michalevsky,
Dani Shaket, Marko Vukolic

http://webee.technion.ac.il/~idish

Idit Keidar SYSTOR'10 46

http://webee.technion.ac.il/~idish�

	Reliable Distributed Storage�A Research Perspective
	UnDistributed Enterprise Storage�(What I Won’t Talk About Today)
	Alternatives to Enterprise Storage�(I’ll Talk About Today)
	A Short Introduction to�Reliable Distributed Storage
	Distributed Storage Architecture
	Getting Fault-Tolerance
	Consistency
	A Case for Data-Centric �Replica Coordination
	High Availability and Asynchrony
	Two Copies Are Not Enough�With Asynchronous Communication
	A Simple Reliable Distributed Storage Algorithm
	A Simple Reliable Distributed Storage Algorithm (Cont’d)
	Many Variants and Extensions �in The Literature
	Outline
	Dynamic (Reconfigurable)�Distributed Storage
	Real Systems Are Dynamic
	Pitfall of Naïve Reconfiguration
	Pitfall of Naïve Reconfiguration
	Reconfiguration Option 1: Centralized
	Reconfiguration Option 2: Distributed Agreement
	A Theoretical Note
	Problem with Typical Specs of Dynamic Systems’ Availability
	Service Progress Specs
	Dynamic Progress Specs: �A Broader Look
	Reconfiguration Option 3: DynaStore
	Tracking Evolving Config’s
	Tracking Config’s in DynaStore
	A Reliable Distributed Storage Algorithm
	Consensus-Free Reconfiguration
	The Stronger Progress Guarantees Are Not For Free
	Reconfiguration Takeaways
	Outline
	Can We Trust The Cloud �With Reliability & Consistency?
	Verification for Untrusted Cloud Storage
	Our Goal
	Strong Consistency?
	Eventual Consistency Semantics
	Venus Design Principles
	Venus Architecture
	Venus Availability
	Venus Basics
	Toolbox
	Venus for Amazon S3 vs. Raw S3
	Conclusions: Distributed Storage
	Computing Predictions &Trends
	Thanks!

