
© 2011 IBM Corporation

Distributed and Fault-Tolerant Execution
Framework for Transaction Processing

May 30, 2011
Toshio Suganuma, Akira Koseki, Kazuaki Ishizaki, Yohei Ueda,
Ken Mizuno, Daniel Silva*, Hideaki Komatsu, Toshio Nakatani

IBM Research – Tokyo, *Amazon.com, Inc

����������

�Transaction-volume explosions are increasingly common in
many commercial businesses

–Online shopping, online auction services
–Algorithmic trading
–Banking services
–more…

� It is difficult (if not impossible) to create systems that satisfy
transaction, scalable performance, and high availability

�Can we improve performance without significant loss of
availability?

����	�
������

�Our replication protocol
–Has a feature of continuous adjustment between

performance and availability
–Keeps global data consistency at transaction boundaries
–Enables scalable performance with a slight compromise of

availability

Study of performance-availability trade-off in a distributed
cluster environment by proposing a new replication protocol

�����

�Motivation and Contributions

�Replication Scheme
–Data replication model
–Existing replication strategies
–Our approach
–Replication protocol detail
–Failure recovery process
–Failover example

�Availability

�Experiment

�Summary

����������������������
� Data tables are partitioned and distributed over a cluster of nodes.

� Each partition is replicated on 3 different nodes (as Primary, Secondary,
and Tertiary data), and each node serves for 3 different partitions

Node 1

2-P 3-P1-P 4-P

1-S

10-T

10-S

9-T

2-S

1-T

3-S

2-T

5-P

4-S

3-T

10-P

9-S

8-T

Node 2 Node 3 Node 4 Node 10

21 5 63 4

X-P: Primary data

X-S: Secondary data
X-T: Tertiary data

7 10

partitioning function

Node 5 Spare Spare

Large dataset

�������������������� �����������	����
1. Synchronous replication

– Primary waits for changes to be mirrored in Backup nodes
– Allows failover without data loss
– Limited performance: “Danger of replication…” paper [SIGMOD, 1996]
– Example: Traditional RDB systems, e.g. DB2 parallel edition

2. Asynchronous replication
– Primary proceeds without waiting acknowledgement from Backup
– Risk data loss upon failover to Backup nodes
– Better performance by passing synchronization delay to read

transaction
– Example: Chain replication [OSDI, 2004], Ganymed [Middleware,

2004]

repliesupdates
queries

HEAD TAIL

A Chain example

�������������������� ��	���	����
We employ different replication policy for 2 backup nodes

� Primary: Active computation node

� Secondary: Synchronous replication node

� Tertiary: Asynchronous replication node

�This allows performance improvement with relaxed synchronization,
while Tertiary can contribute for increasing availability

Primary node

A
pp

lic
at

io
n

read

update/commit

Secondary node Tertiary node

change
log

Log data Log datachange
log

change
log

update/
commit

update/
commit

�	��������������� � �����������!��"

Primary worker Secondary worker Tertiary worker

Global
UOW 1

Global
UOW 2

Master node

� Master sends messages to all Primary to start their local tasks

� Primary accumulates all data updates from application to logs and sends
them to Secondary

� Secondary passes the change logs to Tertiary

change
log

change
logLo

ca
l T

as
k

read

change
log

update/committask start to
other Primary

task start

�	��������������� # ������������	���	$

Primary worker Secondary worker Tertiary worker

Global
UOW 1

Global
UOW 2

Master node

� Secondary notifies Primary when log buffering is completed

� Primary commits the local transaction when log buffering completion
message arrived from Secondary

� Primary then sends the task end message to Master

change
log

change
logLo

ca
l T

as
k

read

update/commit
change

log

commit

bufferingComplete

task end from
other Primary

task end

�	��������������� % ������������������	$

Primary worker Secondary worker Tertiary worker

Global
UOW 1

Global
UOW 2

Master node

� Master receives task end messages from all Primary

� Master sends all Secondary to commit

� Primary start the next local task after receiving the message from Master

change
log

change
logLo

ca
l T

as
k

read

update/commit
change

log

Lo
ca

l T
as

k

task start
doCommit

�	��������������� & �����������!�	���	$

Primary worker Secondary worker Tertiary worker

Global
UOW 1

Global
UOW 2

Master node

� Tertiary notifies Primary when the change logs are committed

� Primary deletes the corresponding logs

change
log

change
logLo

ca
l T

as
k

read

update/commit
change

log

Lo
ca

l T
as

k

deleteLog

commitComplete

'����(������	��������

2-P1-P 3-P

2-S
10-T

10-S
9-T

1-S
1-T

4-P

3-S
2-T

Node 1 Node 2 Node 3 Node 4

3-P2-P
2-S

2-T10-S

4-P
3-S

1-S

Node 1 Node 2 Node 3 Node 4

1-P

Primary

Secondary

Tertiary

5-P

4-S
3-T

Node 5

3-T

5-P

Node 5

10-P

9-S
8-T

Node 10 Spare2

9-S
10-P

8-T

Node 10 Spare2

Spare1

1-T
10-T
9-T

Spare1

3-P 5-P

2-S 9-S
3-S1-S

10-P

8-T

Node 5Node 3 Node 4 Node 10 Spare2

4-P
1-T
10-T
9-T

Spare1

4-T
3-T
2-T

2-P

0-S

Node 2

1-P

Node 1

4-S

� A spare node is activated upon failure of any single node
– Secondary and Tertiary are promoted to Primary and Secondary
– Spare node gets copies from the new Secondary, and acts as Tertiary

)��	����������
����$�
$�!�	���	$
� Suppose both Primary and Secondary fail at the same time

� If Tertiary has the log records made in the last committed transaction, the
system can continue without data loss

:
Update1
Update2
Update3

Commit
Update4

La
st

 c
om

m
itt

ed
tra

ns
ac

tio
n

System can
continue

Primary Secondary Tertiary

:
Update1
Update2
Update3

Commit

:
Update1
Update2
Update3

C
ur

re
nt

tra

ns
ac

tio
n

Failover

�����*��������
� If both Primary and Secondary fail at the same time, and

� If Tertiary has not received all the logs of the last committed transaction,
some data is lost and the system is not automatically recoverable

:
Update1
Update2
Update3

Commit
Update4

La
st

 c
om

m
itt

ed
tra

ns
ac

tio
n

Not automatically
recoverable

Primary Secondary Tertiary

:
Update1
Update2
Update3

Commit

:
Update1
Update2

C
ur

re
nt

tra

ns
ac

tio
n

Delay

Failover
not possible

Incomplete
logs

�����
����$�+������	�������������������
� Availability of our system is affected by the delay of transferring the log to

Tertiary.

� The delay is significantly affected by data transfer efficiency from
Secondary to Tertiary

– Disk accesses due to insufficient memory can be a bottleneck

� By removing I/O bottlenecks on the nodes, we can minimize the delay and
maximize P, the probability of availability of the log records of the last
committed transaction.

1-synch-backup 2-synch-backup

99.9% 99.9999%

Case: A cluster of 1,000 nodes, each has 0.001 failure probability
(corresponding 3-year (= 1,000-day) MTBF and 1-day MTTR

99.999%99.99%

P=0.5 P=0.9

�����������+����!��,��-�	"�����
� We created a batch job by combining three different scenarios in TPC-C;

NewOrder, Payment, and Delivery

� We evaluate our replication protocol from the following aspects:
– Scaling efficiency (strong scaling and weak scaling)
– Replication overhead (with and without replication)
– Effect of relaxed synchronization

Node 1

Node 2

Node 39Master Workers

DB2

PrimaryNewOrder
(step 1)

Delivery
(step 3)

Payment
(step 2)

Secondary

Tertiary

Input :
Purchase
Order List

Input data partitioned
and assigned to workers

IBM BladeCenter JS21 (PowerPC970MP) x39

��	�������������..������$
� The throughput is increased almost linearly as nodes are added.

Higher is better

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 4 8 12 16 20 24 28 32 36 40
of blades

T
hr

ou
gh

pu
t (

of

 in
pu

t /
 s

ec
)

40000

80000

160000

320000

400000

Total input
data size

-��"����������..������$
� The execution time is almost flat as nodes are added if sufficient memory

is available for the node (e.g. buffer pools of DB).
– Otherwise, the increase of disk accesses causes the delay of synchronization

Low er is better

0

50

100

150

200

250

0 4 8 12 16 20 24 28 32 36 40
of blades

E
la

ps
ed

 ti
m

e
(s

ec
)

1K

5K

10K

15K

20K

Input size per
each blade

(a) Strong Scaling (# of record = 40,000)

0

50

100

150

200

250

300

350

0 4 8 12 16 20
of blades

E
la

ps
ed

 ti
m

e
(s

ec
)

no data replication

with data replication

���������������	����
� The replication overhead varies with the input data size per blade

– A ���� heavy disk accesses causes fairly high overhead

– B ���� with sufficient memory resource, the overhead is 20%

B

A

������$���	���/�������..���

� We compared the total execution
time of TPC-C NewOrder
transactions between conventional
(full synchronization) model and
our relaxed synchronization model

� The 43% reduction of the
execution time is due to our
approach of low synchronization
overhead

TPC-C NewOrder Transaction

0

20

40

60

80

100

120

140

160

T
ot

al
 e

xe
cu

tio
n

 ti
m

e
(s

ec
)

Conventional full synchronization
Our relaxed synchronization

43%

�����	$
� We proposed a new replication protocol that combines two different

replication policies
– Synchronous replication for Secondary and asynchronous replication

for Tertiary.

� Using our replication scheme:
– We can achieve scalable performance
– System tolerates up to 2 simultaneous node failure among triple

redundant nodes most of the time
– Overhead of data replication is 20% with sufficient memory

� We showed performance-availability trade-off that we can obtain
performance improvements by slightly compromising availability

– E.g. 99.9999% � 99.999%

0��"��

�$��������	���+�1)���/�"� �����2��3�!���#4�45

1. Data (both DB tables and input files) are partitioned and distributed over a
cluster of nodes, as specified by users

2. Master partitions the job into tasks based on data layout, and assigns them to
nodes based on owner-compute-rule

3. Each node executes a task (which only requires local data accesses)

Client
Master node
(primary and back up)

Job request

Node cluster

B1 B2 B3 Bn

Independent
DB instance

A1 A2 A3 An

Partitioned as
specified by users

DB DB DB DB

ID $
9638 120.5
4738 25.6
……

Input file

Assign tasks to nodes based
on data layout

node-1 node-2 node-3 node-n

Distributed tables
for A and B

Partitioned
input file

Partitioned
input file

Partitioned
input file

Partitioned
input file

����������������������67�
� Optimistic replication

– Rely on eventual consistency model
– Conflict resolution mechanism is necessary
– Transaction cannot be supported (e.g., read-modify-write is not

possible)
– Superior in performance and availability
– Example: Gossip protocol in Cassandra

�����
����$������������
Example
� A cluster of 1,000 nodes, each has the probability of 0.001 failure

– E.g. 3-year (= 1,000-day) MTBF (Mean Time Between Failure) and
1-day MTTR (Mean Time To Repair)

� Conventional full synchronization approach:
– System becomes unavailable only when all nodes holding a copy of a

particular partition fail at the same time
�99.9999% availability for 2-backup-node replication
�99.9% availability for 1-backup-node replication

� Our relaxed synchronization approach:
– System availability depends on the probability of log availability in

tertiary on a simultaneous failure of primary and secondary nodes
�99.999% if we assume this probability of log-availability is 0.9
�99.99% if we assume this probability of log-availability is 0.5

-�������8��������
��������9:
� Primary has committed all updates in the last UOW and sent their logs to

Secondary.
� Secondary has received the logs for the last UOW.
� Tertiary is alive and ready to receive logs

�Our protocol proceeds by keeping the Sustainable State among all triplets

Transaction
Boundary

Transaction
Boundary

Transaction
Boundary

All updates
committed

All updates
committed

All updates
committedPrimary

Secondary

Tertiary

UOW 3 (current)UOW 2UOW 1

All change
logs received

All change
logs received

Receiving
change logs

Receiving
change logs

All change
logs received

All change
logs received

Example

Sending
change logs

(����	��������	$��	�����
1. Find a transaction recovery point and determine new Primary and

Secondary

2. Select a node to join the triplet as new Tertiary

3. Have the new Secondary send a snapshot and logs to the new Tertiary

4. Resume application on new Primary

Primary and
Secondary alive

Only Secondary
alive

Secondary and
Tertiary alive

Not automatically
recoverable

Only Tertiary
alive

Primary and
Tertiary alive Only Primary

alive

All 3 Workers
alive keeping

sustainable stateSecondary fails

Tertiary
fails

Primary
fails

Both Secondary
and Tertiary fail

Both Primary and
Secondary fail

Both Primary
and Tertiary fail

Logs not
available

Node promotion Node promotion and/or new
Secondary assignment

New Tertiary
assignment

