Inter-Cloud Mobility of Virtual Machines
Cloud Computing 101

- Subscribe to virtual computing resources hosted on the network

- User Benefits:
 - Pay as you go
 - No upfront capital outlay
 - No hardware maintenance
 - Illusion of infinite computing resources available on demand

- Enablers:
 - More powerful hardware resources for less (Moore’s Law)
 - Virtualization
 - Resource sharing
 - Multi-Tenancy
 - Excess Bandwidth (Dotcom Bubble)
 - Remote access
 - Distributed Computing

- Public Clouds:
 - Amazon (EC2, S3)
 - Rackspace
 - Google

- Private Clouds:
 - VMWare VCloud
 - OpenStack
Cloud Insularity
- Autonomy
- Privacy
- Security

Cloud Federation
- Cloud Burst
- Load balancing
- Global Utility

Inter-Cloud VM Mobility
- Inter-Cloud Live VM Migration
- Internet Scale Virtual Application Network
Live VM migration

Same Cloud (state of the art)

- Between co-located hosts
 - Same subnet
 - Shared storage

Inter-Cloud (our contribution)

- Spans:
 - subnets
 - WAN
 - administrative boundaries

- Between
 - Anonymous hosts
 - Without shared storage

- Long Distance
Secure Inter-Cloud Migration Channel

Migration with Non-Shared Storage

- **Copy Modes**
 - Whole disk
 - Copy on Write (CoW) – delta copy only

- **Open source contributions**
 - QEMU-KVM 0.12.1
 - libvirt 0.8.2
Virtual Application Networks (VANs)

- Fully isolated virtual application networks
 - Complex Application with multiple components, e.g. 3 tier
 - Supports multi-tenancy
- Host Based Solution with Dynamic Routing
- A Distributed Virtual Network
- Offers L2-like network services
Location independent virtual networks

- Site Proxies enable cloud insularity
Internet Scale Network Virtualization

- Zero configuration: created, extended and migrated on-demand
Internet Scale Network Virtualization

- Zero configuration: created, extended and migrated on-demand
Internet Scale Network Virtualization

- Zero configuration: created, extended and migrated on-demand
Inter-Cloud Mobility Empirical Study

IBM Israeli Evaluation
- Haifa
- Tel Aviv
- Conclusions
 - Time to migrate is function of rate or change and CoW size (not VM size)
 - Co-located VM network performance not adversely affected by migration

<table>
<thead>
<tr>
<th>Migration Method</th>
<th>10 MB</th>
<th>100 MB</th>
<th>1 GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Storage</td>
<td>0.06s</td>
<td>15.00s</td>
<td>76.00s</td>
</tr>
<tr>
<td>Our Solution</td>
<td>0.03s</td>
<td>05.10s</td>
<td>15.00s</td>
</tr>
</tbody>
</table>
Cloud Federation Load Balancing

- Reservoir EU Project Federation
 - Thales, France
 - Umea University, Sweden
 - UNIME University, Italy

- Use case
 - Thales cloud deploys SAP but lacks resources
 - Migrates Sun Grid Engine VMs to UMEA

- Measurements
 - 30-60 second migration time
 - Inter-cloud network latency 55 milliseconds
 - 0.5 millisecond network latency co-located VMs