SUSTAINABLE PREDICTIVE STORAGE MANAGEMENT David Essary Dept. of Computer Science University of Pittsburgh

© 2011 David Essary

SYSTOR 2011

Dept. of Computer Science

INTRODUCTION

- Disk vs CPU
- Storage systems' power becoming more critical
- Rate of data generation is alarming
- % No "silver bullet"
- Goal: Dynamic (and *adaptive*), sustainable predictive grouping engine
- # Group = Disk track

MOTIVATING EXAMPLE

CHALLENGES

** When are predictions performed?
** How are predictions made?
** How is predictive metadata gathered?
** Where are predictions to be located?
** How are predictions used?

SUPERGROUPS

A, B, C, G, D, E, F, I, K, L, M, N, ?, ?, ?, ?

© 2011 David Essary

SYSTOR 2011

Dept. of Computer Science

G

H

GROUP SCANNING

- Does the offending block exist between the current disk head location and the target location
- If so, we instead switch to the predictive group containing the offending block

SYSTOR 2011

Track distance

Disk arm movement

Disk rotation

REDUCING COMMIT OVERHEAD

Commit predictions to device *opportunistically* Use only items already in main memory
 Avoid additional seeks

* Avoid updating a group if it contains 75% of objects that it "should" contain

* We call this percentage the overlap threshold

SYSTOR 2011

Dept. of Computer Science

OVERLAP THRESHOLD

Group α A, B, C, D, E, F, G

<u>Group α'</u> A, B, C, D, H, I, J

Overlap: 62.5% **<u>Result</u>**: Replace group α with α'

Group a A, B, C, D, E, F, G A, B, C, D, E, F, J

<u>Group α"</u>

Overlap: 87.5% **<u>Result</u>**: Abort update and keep group α

HARDWARE-BASED VALIDATION

HARDWARE VALIDATION DAQ AND EXTERNAL HD

Percentage Latency Reduction (Group Size: 8K)

Percentage Energy Reduction (Group Size: 8K)

Percentage Latency Reduction (Group Size: 1K)

Percentage Energy Reduction (Group Size: 1K)

VALIDATION RESULTS Percentage Reduction of Energy

by Block Size

SPORE CONCLUSIONS

- Opportunistic, dynamic, sustainable
- Replicates data on the fly (no warm-up period)
- Simultaneously reduces
 - Track distance (up to 80% reduction)
 - Track seeks (up to 65%)
 - Latency due to mechanical movement (up to 63%)
 - Energy due to mechanical movement (up to 61%)
- Strong correlation between seek reduction and energy and latency reduction
- Latency and energy results validated by live hardware

