
Coping With Context

Switches in Lock-Based STMs

Yoav Cohen
Joint with

Yehuda Afek and Adam Morrison

Tel Aviv University

Agenda

Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Software Transactional Memory

 Programmers define blocks of code as transactions:

 Transactions take effect atomically

Simplicity of Global Clock with performance of Fine-

Grained Locking

atomic {
 <code block>
}

Lock-Based STMs
Basic design:

Map

Array of
Versioned Locks

Application
Memory

Version = Lock Bit

Incrementing a Shared Counter

counter=12

atomic {
 int c = counter;
 c = c+1;
 counter = c;
}

counter=13
Start TX

Read
counter

Take
Lock
Commit

Start
TX

Read
counter

Take
Lock

Write
counter

Release
Lock

Rollback

= V = 0 0 V = 0 1 V = 1 0

Context Switches

Threads may be switched-out when:

 # S/W threads > #H/W threads

 Interrupts

 Page faults

Q: A thread with a lock is switched out. What

happens?

A: Transactions that need this lock abort or wait

The Result: Throughput Degradation

Deuce TL2
running on Intel
i7 with 8 hyper
threads More context switches

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

The Solution: Lock Stealing

Instead of waiting for a switched-out
lock, steal it:

 Abort the switched-out transaction

 Take the lock

Lock Stealing

 Status field per thread:

 RUNNING, COMMITTED or ABORTED

 Enhanced locks:

Version = Lock Bit Owner Owner L. Clock

Thread Id of
Lock Owner

Thread Local
Counter

The pair <Owner, Local Clock> is a
unique transaction identifier

= Status Local Clock

Lock Stealing

 <T1,24> aborts <T2,10>:

 CAS(T2, <RUNNING,10>, <ABORTED,10>)

 <T1,24> steals L from <T2,10>:

 CAS(Lock,

 <l=1, v=2, owner=T2, local_clock=10>,

 <l=1, v=2, owner=T1, local_clock=24>)

Does It Always Work?

Q: Can we always do this trick?

A: Nope. When a transaction is COMMITTED,
it can’t be aborted.

Transaction Lifecycle

Start
Run
TX

Try
Commit

Update
Memory

Release
Locks

Roll
Back

Window of
Abort-ability

Window of
Un-

Abortability

}

} Take
Locks

Brief Summary

 Context switches cause throughput
degradation

 Because switched out locks result in lots of
aborts

 New approach: instead of waiting for locks,
abort other and steal the lock

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Lock Stealing for TL2

 Based on Deuce

 An open-source Java STM framework

 Added Contention Management support:

 Upon conflict contention manager invoked

 Decides what to do:

 Restart current transaction

Wait for lock

 Abort other transaction and steal lock

Lock Stealing for TL2

 Lock-Waiting Contention Managers:

 Suicide, Aggressive, Karma and Polka

 Lock-Stealing Contention Managers:

 AggressiveLS, KarmaLS and KillPrioLS

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Empirical Evaluation

 Benchmarks:

 Integer-Set microbenchmarks

 STAMP – simulates real applications

 Hardware:

 Intel i7 920 Extreme Edition (Nehalem)
2.67 GHz

 4 cores, each running 2 hardware threads

Red-Black Tree Integer Set

Red-Black Tree Integer Set

-10%

+19%

STAMP Intruder

STAMP Intruder

+20%

+53%

Thank You

Links

 Deuce STM project

 http://sites.google.com/site/deucestm/

 org.deuce.transaction.tl2cm package

