
Anchor-driven Subchunk Deduplication

Bartłomiej Romański
Łukasz Heldt
Wojciech Kilian
Krzysztof Lichota
Cezary Dubnicki

9LivesData LLC



SYSTOR 2011                                                   9LivesData                                                          2

9LivesData 
R&D company based in Warsaw, Poland
50+ scientists and software engineers
designers/coders of HYDRAstor backend for NEC

HYDRAstor
scalable, content-addressable backup storage
global dedup, self-healing
owned by NEC, on sale in the USA and Japan
started by 9LivesData founder in Princeton, NJ
fastest and largest dedup system (Curtis W. 
Preston analysis)

Who we are
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Problem statement

System model
Block store
Clients writing data streams (backup)

Goals
Maximize amount of data kept in the system
Measured using duplicate elimination ratio (DER)

DER = data written/data physically stored

Subchunk deduplication aims at maximizing DER.
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Outline

Quick introduction to deduplication and chunking

Subchunk deduplication

Results of simulations

Conclusions
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Content-based deduplication

Cut the data into chunks (sequences of bytes)
Compute hash (e.g. SHA-1) on each chunk
Check if hash exists in block store

Exists – deduplication
Otherwise – store
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Fixed-size chunking problem

Fixed-size chunks have problems
Insertions/deletions break dedup

Standard solution: content-defined chunking (CDC)
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Content-defined chunking (CDC)

Move sliding fixed-size window over input bytes
Compute checksum over window bytes 
If checksum's last X bits are zeroes – cut at this point
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Content-defined chunking (CDC)

Cut points happen every 2X bytes on average (expected 
value for random data)
Cut points usually preserved by insertions/deletions
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Deduplication vs chunk size

The smaller the chunk size, the better deduplication
But: short chunk size impractical due to metadata 
overhead and other reasons
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Conclusions from CDC – use 2 chunk sizes

Big chunks – smaller overhead, worse raw dedup
Small chunks – bigger overhead, better raw dedup

Use big chunks where possible
Use small chunks to improve dedup in areas of 
change
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Conclusions from CDC – avoid small chunks overhead

Small chunks have higher metadata overhead
Per-chunk metadata is constant
Metadata overhead spoils dedup ratio

Small chunks cause worse performance
Per-chunk processing has constant factor

Conclusions
Avoid small chunks metadata overhead
Process big chunks not small chunks
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Subchunk deduplication
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Subchunk definition

Observation: all chunks created with X+1 trailing zeroes 
are also chunks of level X (i.e. cut points for avg. 64 KB 
chunks are also cut points for 32 KB, 16 KB, 8 KB, ...)
A chunk can be split into subchunks in deterministic way
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Main idea of subchunk dedup

Use global index to locate big chunks
Dedup against all data in the system

Use subchunks instead of small chunks
Subchunk share metadata with container chunk

Use additional structure to locate subchunks
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Locating subchunks

Deduplication against all subchunks costly
Too many subchunks

Duplicates are usually local to data stream

Solution
Split subchunks index into parts (mapping packs)

Use only parts relevant to current data stream

Load proper index parts dynamically during dedup 
(build dedup context for current data stream)
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Splitting subchunk index into mapping packs

Mapping packs are stored in block store
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Subchunk deduplication algorithm

1. Chunk the input stream into big chunks and each chunk 
into subchunks

2. Store hashes of subchunks in mapping pack for future 
dedup

3. Using global index check if big chunk exists, if not: 
   3.1. Check if each subchunk exists in dedup context 
   3.2. Emit non-duplicate subchunks as one block

Note: algorithm works with base dedup even when 
subchunk mappings do not exist, so mapping packs are 
disposable
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Subchunk emission
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Subchunk deduplication context

Runtime cache of subchunk hashes to subchunks

Stored in RAM

Constant size
LRU per mapping

Updated by loading mapping packs

Should keep mappings relevant for incoming backup 
stream
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Locating mapping packs

Problem: when writing a stream, how to find mapping 
packs which likely contain mappings for incoming data?

We do not assume knowledge of data streams relations

We need to be able to handle changes in data streams
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Splitting stream into windows

Apply content-defined chunking to chunk hashes, instead 
of bytes (with window size = 1)
Anchor sequence – block whose hash has X trailing 0 bits
Anchor window – data chunks between 2 anchor 
sequences
Anchor sequences usually kept in case of 
insertions/deletions
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Locating mapping packs using anchors

Anchor - special block corresponding to anchor 
sequence

addressed with anchor sequence address
Each anchor keeps pointers to multiple (N) mapping 
packs (prefetching links)
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Mapping packs and dedup context update

When anchor sequence is spotted in data stream:
1.Finish writing current mapping pack to block store

● store pointer to pack with the previous anchors
● emit anchors with sufficient prefetching pointers

2.Prefetch mapping packs for anchor into dedup context
● remove old mappings from dedup context (LRU)
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Simulation
results
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Results of simulations

Datasets
Netware (backups)
Wikipedia snapshots
Mailboxes
Total

Metadata
Low metadata overhead
High metadata overhead
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Reasons for high metadata overhead

High resiliency - distributed system must survive many 
node failures

High availability – many copies of metadata 
critical operations like deletion need complete 
metadata
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Results for high metadata overhead system

Expected subchunk size is 1/8 of chunk size
Subchunk 64/8KB is better than CDC 8KB (by 20%)
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Results for low metadata overhead system

Expected subchunk size is 1/8 of chunk size
Subchunk 16KB/2KB is better than CDC 8KB (by 6%)
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Conclusions

Better effective deduplication ratio
high metadata overhead: +20% vs CDC 8KB
low metadata overhead: +6% vs CDC 8KB

Higher average block size
better for performance

Low metadata overhead for subchunks
Disposable subchunk structures

can be kept with low resiliency
only affect deduplication ratio gain

Good tradeoff between fragmentation and deduplication 
ratio (details in paper)
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Questions?
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Thank you!
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