
Anchor-driven Subchunk Deduplication

Bartłomiej Romański
Łukasz Heldt
Wojciech Kilian
Krzysztof Lichota
Cezary Dubnicki

9LivesData LLC

SYSTOR 2011 9LivesData 2

9LivesData
R&D company based in Warsaw, Poland
50+ scientists and software engineers
designers/coders of HYDRAstor backend for NEC

HYDRAstor
scalable, content-addressable backup storage
global dedup, self-healing
owned by NEC, on sale in the USA and Japan
started by 9LivesData founder in Princeton, NJ
fastest and largest dedup system (Curtis W.
Preston analysis)

Who we are

SYSTOR 2011 9LivesData 3

Problem statement

System model
Block store
Clients writing data streams (backup)

Goals
Maximize amount of data kept in the system
Measured using duplicate elimination ratio (DER)

DER = data written/data physically stored

Subchunk deduplication aims at maximizing DER.

SYSTOR 2011 9LivesData 4

Outline

Quick introduction to deduplication and chunking

Subchunk deduplication

Results of simulations

Conclusions

SYSTOR 2011 9LivesData 5

Content-based deduplication

Cut the data into chunks (sequences of bytes)
Compute hash (e.g. SHA-1) on each chunk
Check if hash exists in block store

Exists – deduplication
Otherwise – store

SYSTOR 2011 9LivesData 6

Fixed-size chunking problem

Fixed-size chunks have problems
Insertions/deletions break dedup

Standard solution: content-defined chunking (CDC)

SYSTOR 2011 9LivesData 7

Content-defined chunking (CDC)

Move sliding fixed-size window over input bytes
Compute checksum over window bytes
If checksum's last X bits are zeroes – cut at this point

SYSTOR 2011 9LivesData 8

Content-defined chunking (CDC)

Cut points happen every 2X bytes on average (expected
value for random data)
Cut points usually preserved by insertions/deletions

SYSTOR 2011 9LivesData 9

Deduplication vs chunk size

The smaller the chunk size, the better deduplication
But: short chunk size impractical due to metadata
overhead and other reasons

SYSTOR 2011 9LivesData 10

Conclusions from CDC – use 2 chunk sizes

Big chunks – smaller overhead, worse raw dedup
Small chunks – bigger overhead, better raw dedup

Use big chunks where possible
Use small chunks to improve dedup in areas of
change

SYSTOR 2011 9LivesData 11

Conclusions from CDC – avoid small chunks overhead

Small chunks have higher metadata overhead
Per-chunk metadata is constant
Metadata overhead spoils dedup ratio

Small chunks cause worse performance
Per-chunk processing has constant factor

Conclusions
Avoid small chunks metadata overhead
Process big chunks not small chunks

SYSTOR 2011 9LivesData 12

Subchunk deduplication

SYSTOR 2011 9LivesData 13

Subchunk definition

Observation: all chunks created with X+1 trailing zeroes
are also chunks of level X (i.e. cut points for avg. 64 KB
chunks are also cut points for 32 KB, 16 KB, 8 KB, ...)
A chunk can be split into subchunks in deterministic way

SYSTOR 2011 9LivesData 14

Main idea of subchunk dedup

Use global index to locate big chunks
Dedup against all data in the system

Use subchunks instead of small chunks
Subchunk share metadata with container chunk

Use additional structure to locate subchunks

SYSTOR 2011 9LivesData 15

Locating subchunks

Deduplication against all subchunks costly
Too many subchunks

Duplicates are usually local to data stream

Solution
Split subchunks index into parts (mapping packs)

Use only parts relevant to current data stream

Load proper index parts dynamically during dedup
(build dedup context for current data stream)

SYSTOR 2011 9LivesData 16

Splitting subchunk index into mapping packs

Mapping packs are stored in block store

SYSTOR 2011 9LivesData 17

Subchunk deduplication algorithm

1. Chunk the input stream into big chunks and each chunk
into subchunks

2. Store hashes of subchunks in mapping pack for future
dedup

3. Using global index check if big chunk exists, if not:
 3.1. Check if each subchunk exists in dedup context
 3.2. Emit non-duplicate subchunks as one block

Note: algorithm works with base dedup even when
subchunk mappings do not exist, so mapping packs are
disposable

SYSTOR 2011 9LivesData 18

Subchunk emission

SYSTOR 2011 9LivesData 19

Subchunk deduplication context

Runtime cache of subchunk hashes to subchunks

Stored in RAM

Constant size
LRU per mapping

Updated by loading mapping packs

Should keep mappings relevant for incoming backup
stream

SYSTOR 2011 9LivesData 20

Locating mapping packs

Problem: when writing a stream, how to find mapping
packs which likely contain mappings for incoming data?

We do not assume knowledge of data streams relations

We need to be able to handle changes in data streams

SYSTOR 2011 9LivesData 21

Splitting stream into windows

Apply content-defined chunking to chunk hashes, instead
of bytes (with window size = 1)
Anchor sequence – block whose hash has X trailing 0 bits
Anchor window – data chunks between 2 anchor
sequences
Anchor sequences usually kept in case of
insertions/deletions

SYSTOR 2011 9LivesData 22

Locating mapping packs using anchors

Anchor - special block corresponding to anchor
sequence

addressed with anchor sequence address
Each anchor keeps pointers to multiple (N) mapping
packs (prefetching links)

SYSTOR 2011 9LivesData 23

Mapping packs and dedup context update

When anchor sequence is spotted in data stream:
1.Finish writing current mapping pack to block store

● store pointer to pack with the previous anchors
● emit anchors with sufficient prefetching pointers

2.Prefetch mapping packs for anchor into dedup context
● remove old mappings from dedup context (LRU)

SYSTOR 2011 9LivesData 24

Simulation
results

SYSTOR 2011 9LivesData 25

Results of simulations

Datasets
Netware (backups)
Wikipedia snapshots
Mailboxes
Total

Metadata
Low metadata overhead
High metadata overhead

SYSTOR 2011 9LivesData 26

Reasons for high metadata overhead

High resiliency - distributed system must survive many
node failures

High availability – many copies of metadata
critical operations like deletion need complete
metadata

SYSTOR 2011 9LivesData 27

Results for high metadata overhead system

Expected subchunk size is 1/8 of chunk size
Subchunk 64/8KB is better than CDC 8KB (by 20%)

SYSTOR 2011 9LivesData 28

Results for low metadata overhead system

Expected subchunk size is 1/8 of chunk size
Subchunk 16KB/2KB is better than CDC 8KB (by 6%)

SYSTOR 2011 9LivesData 29

Conclusions

Better effective deduplication ratio
high metadata overhead: +20% vs CDC 8KB
low metadata overhead: +6% vs CDC 8KB

Higher average block size
better for performance

Low metadata overhead for subchunks
Disposable subchunk structures

can be kept with low resiliency
only affect deduplication ratio gain

Good tradeoff between fragmentation and deduplication
ratio (details in paper)

SYSTOR 2011 9LivesData 30

Questions?

SYSTOR 2011 9LivesData 31

Thank you!

	title
	Slide 2
	Slide 3
	agenda
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

