
Weak Durability

Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

How Does a File System
Write To Disk?

Journaling File System

Journaling File System
What is goal of journaling?

• Crash consistency

Journaling File System
What is goal of journaling?

• Crash consistency

How achieved?

• Use write-ahead log to record
info about pending update

• If crash occurs during update,
just replay what is in log to repair

Journaling File System
What is goal of journaling?

• Crash consistency

How achieved?

• Use write-ahead log to record
info about pending update

• If crash occurs during update,
just replay what is in log to repair

Turns multiple writes into single
atomic action

Example: File Append

Example: File Append
What does file append do?

• Allocates new data block

• Fills data block with user data from write()

• Adds pointer to data block in metadata
structure of file system (called an inode)

Example: File Append
What does file append do?

• Allocates new data block

• Fills data block with user data from write()

• Adds pointer to data block in metadata
structure of file system (called an inode)

What on-disk structures are modified?

• Bitmap (to allocate block)

• Inode (to point to new block)

• Data block (to hold user data)

Example: File Append
What does file append do?

• Allocates new data block

• Fills data block with user data from write()

• Adds pointer to data block in metadata
structure of file system (called an inode)

What on-disk structures are modified?

• Bitmap (to allocate block)

• Inode (to point to new block)

• Data block (to hold user data)

Must all be done atomically

ext3 Ordered Journaling
Jo

ur
na

l

Fi
le

 S
ys

te
m

 P
ro

pe
r

Memory

Disk

ext3 Ordered Journaling
Jo

ur
na

l

Fi
le

 S
ys

te
m

 P
ro

pe
r

data

Memory

Disk

ext3 Ordered Journaling
Jo

ur
na

l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode data

Memory

Disk

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Jo

ur
na

l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

Memory

Disk

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

Memory

Disk

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

T
b

T
e

Memory

Disk

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

T
b

T
e

Memory

Disk

• Write TxBegin+contents

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

• Write TxBegin+contents

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

• Write TxBegin+contents

• Write TxEnd (commit)

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode bit
map• Write TxBegin+contents

• Write TxEnd (commit)

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode bit
map• Write TxBegin+contents

• Write TxEnd (commit)

• Checkpoint inode, bitmap

inode bit
map

dataT
b

T
e

ext3 Ordered Journaling
Protocol

• Write data

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode
bit

map

• Write TxBegin+contents

• Write TxEnd (commit)

• Checkpoint inode, bitmap

Does This Work?
Is It Correct?

Assumptions About
The “Perfect” Disk

Strong Durability

Strong Durability
On-disk (init)

• @ address=A, data=d1

Strong Durability
On-disk (init)

• @ address=A, data=d1

Action

• write(address=A, data=d1’)

Strong Durability
On-disk (init)

• @ address=A, data=d1

Action

• write(address=A, data=d1’)

On-disk (fini)

• @ address=A, data=d1’

Strong Durability
On-disk (init)

• @ address=A, data=d1

Action

• write(address=A, data=d1’)

On-disk (fini)

• @ address=A, data=d1’

The read after write property

Strong Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’)

On-disk (fini)

• @A=d1’

The read after write property

Ordering

Ordering
On-disk (init)

• @A=d1 and @B=d2

Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)

Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)

On-disk (after first write)

• @A=d1’ and @B=d2

Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)

On-disk (after first write)

• @A=d1’ and @B=d2
On-disk (after second)

• @A=d1’ and @B=d2’

Single-Sector Atomicity

Single-Sector Atomicity
On-disk (init)

• @A=d1

Single-Sector Atomicity
On-disk (init)

• @A=d1

Single-Sector Atomicity
On-disk (init)

• @A=d1

Action

• write(@A, d1’)

Single-Sector Atomicity
On-disk (init)

• @A=d1

Action

• write(@A, d1’)

On-disk (fini)

• If write size == single sector (512 bytes):
@A=d1’

• If write size >= single sector:
@A=(mix of d1 and d1’)
(usual case without power loss: @A=d1’)

But Are Disks Perfect?
Unfortunately, no!

Some older problems

• Latent sector errors (LSEs)

• Can’t read a certain block

•Block corruption

• Can read a block but get wrong data

• See [Bairavasundaram ’07, ’08] for details
on frequency and other fun facts

And a newer problem...

Modern Disk Caches

Modern Disk Caches
Caches: Critical for performance

• Cache tracks on reads

• Buffer writes before
committing to surface

Modern Disk Caches
Caches: Critical for performance

• Cache tracks on reads

• Buffer writes before
committing to surface

Example: Why buffering matters

• Write to random blocks

• Vary size of write requests

• Measure average write time

Modern Disk Caches
Caches: Critical for performance

• Cache tracks on reads

• Buffer writes before
committing to surface

Example: Why buffering matters

• Write to random blocks

• Vary size of write requests

• Measure average write time

Random writes

Av
g

w
rit

e
tim

e
(m

s)

0

10

20

30

40

50

Size of write requests

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

w/o cache
w/ cache

Caching + Writes

Caching + Writes
Caching: Handle with care during writes

• Why? Need careful ordering to
implement modern update protocols

• Goal: Crash consistency

Caching + Writes
Caching: Handle with care during writes

• Why? Need careful ordering to
implement modern update protocols

• Goal: Crash consistency

Modern approaches require ordering

• Journaling file systems (e.g., ext3)

• Copy-on-write file systems (e.g., ZFS)

Caching + Writes
Caching: Handle with care during writes

• Why? Need careful ordering to
implement modern update protocols

• Goal: Crash consistency

Modern approaches require ordering

• Journaling file systems (e.g., ext3)

• Copy-on-write file systems (e.g., ZFS)

Trust cache flush to enforce ordering

• Write(A), Flush, Write(B);
“guarantees” A reaches disk before B

Should We Trust Flush?

Should We Trust Flush?
Experts say “it depends”:

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

• From the fcntl man page on Mac OS X:

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

• From the fcntl man page on Mac OS X:
• F_FULLSYNC: Does the same thing as fsync(2) then asks the

drive to flush all buffered data to device. Certain FireWire
drives have also been known to ignore the request to flush
their buffered data.

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

• From the fcntl man page on Mac OS X:
• F_FULLSYNC: Does the same thing as fsync(2) then asks the

drive to flush all buffered data to device. Certain FireWire
drives have also been known to ignore the request to flush
their buffered data.

• From VirtualBox documentation:

Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

• From the fcntl man page on Mac OS X:
• F_FULLSYNC: Does the same thing as fsync(2) then asks the

drive to flush all buffered data to device. Certain FireWire
drives have also been known to ignore the request to flush
their buffered data.

• From VirtualBox documentation:
• If desired, the virtual disk images can be flushed when the

guest issues the IDE FLUSH CACHE command. Normally
these requests are ignored for improved performance.

Weak Durability

Weak Durability
On-disk (init)

Weak Durability
On-disk (init)

• @A=d1

Weak Durability
On-disk (init)

• @A=d1

Action

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)
On-disk (fini)

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)
On-disk (fini)

• @A=d1 (time < T+delta)

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)
On-disk (fini)

• @A=d1 (time < T+delta)

• @A=d1’ (time > T+delta && no power loss) or

Weak Durability
On-disk (init)

• @A=d1

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)
On-disk (fini)

• @A=d1 (time < T+delta)

• @A=d1’ (time > T+delta && no power loss) or

• @A=d1 (power loss at time < T+delta)

Dealing with
Weak Durability

Outline

Method #1: Coerced Cache Eviction

Method #2: No-order File System

Final Thoughts

Coerced Cache
Eviction

How to Reduce
Trust on Disk Ordering?

Idea: Coercion

Idea: Coercion
Desire: Enforce ordering of Write(A), Write(B)

Idea: Coercion
Desire: Enforce ordering of Write(A), Write(B)

Method:

• Write (A)

• Write a bunch of other stuff
(evicting A from cache in process)

• Write (B)

Idea: Coercion
Desire: Enforce ordering of Write(A), Write(B)

Method:

• Write (A)

• Write a bunch of other stuff
(evicting A from cache in process)

• Write (B)

Called Coerced Cache Eviction (CCE)

• Use CCE to build FS that works despite
faulty disk behavior

CCE: Outline

Disk Caching: A Study

Coerced Cache Eviction

Discreet-mode Journaling: Using CCE

Results

Goal: Learn Policy

Goal: Learn Policy
To build CCE, must know eviction policy

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

• Write target eviction block T to disk

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

• Write target eviction block T to disk

• Perform series of writes, varying
number, data amount, sequential/random

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

• Write target eviction block T to disk

• Perform series of writes, varying
number, data amount, sequential/random

• Read back T and measure latency of read

Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

• Write target eviction block T to disk

• Perform series of writes, varying
number, data amount, sequential/random

• Read back T and measure latency of read

• If read is “slow”, T was on disk;
if read is “fast”, T was still in memory

Eviction Graph

Graphs: Sequential and Random patterns

• Vary # of writes (x-axis) + amount (y-axis)

• Observe results to determine effective flush

of writes

to
ta

l s
iz

e
(M

B) Chance of
evicting target:
100%
50%
0%

Seq or Rand

Eviction Graph

Graphs: Sequential and Random patterns

• Vary # of writes (x-axis) + amount (y-axis)

• Observe results to determine effective flush

of writes

to
ta

l s
iz

e
(M

B) Chance of
evicting target:
100%
50%
0%

Seq or Rand

Eviction Graph

Graphs: Sequential and Random patterns

• Vary # of writes (x-axis) + amount (y-axis)

• Observe results to determine effective flush

of writes

to
ta

l s
iz

e
(M

B) Chance of
evicting target:
100%
50%
0%

Seq or Rand

Eviction Graph

Graphs: Sequential and Random patterns

• Vary # of writes (x-axis) + amount (y-axis)

• Observe results to determine effective flush

of writes

to
ta

l s
iz

e
(M

B) Chance of
evicting target:
100%
50%
0%

Seq or Rand

Eviction Graph

Graphs: Sequential and Random patterns

• Vary # of writes (x-axis) + amount (y-axis)

• Observe results to determine effective flush

of writes

to
ta

l s
iz

e
(M

B) Chance of
evicting target:
100%
50%
0%

Seq or Rand

Results

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

Hitachi (8MB cache)

Hitachi flush strategy:

• Over 2MB always flushes cache

• Pick sequential write of > 2MB
(most efficient choice)

of writes # of writes

Seagate Disk

Seagate flush strategy:

• No amount of sequential writes flush cache

• Random writes do better (but not LRU)

Seagate (8MB cache)

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

To
ta

l D
at

a
(m

b)

of writes # of writes

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

0 512 1024
0
8

16
24
32

Hitachi 32 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
8

16
24
32

Hitachi 32 MB
Sequential

0 512 1024
0

16
32
48
64

Samsung 8 MB
Random

0 512 1024
0

16
32
48
64

Samsung 8 MB
Sequential

0 1024 2048
0

32
64
96

128

Samsung 16 MB
Random

0 1024 2048
0
8

16
24
32

Samsung 16 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 16 MB
Random

0 512 1024
0
8

16
24
32

Seagate 16 MB
Sequential

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Random

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Sequential

of writes
0 1280 2560

0
8

16
24
32

WD 16 MB
Random

of writes
0 1024 2048

To
ta

l d
at

a(
M

B)

0
8

16
24
32

WD 16 MB
Sequential

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Random

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Sequential

All Results

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

0 512 1024
0
8

16
24
32

Hitachi 32 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
8

16
24
32

Hitachi 32 MB
Sequential

0 512 1024
0

16
32
48
64

Samsung 8 MB
Random

0 512 1024
0

16
32
48
64

Samsung 8 MB
Sequential

0 1024 2048
0

32
64
96

128

Samsung 16 MB
Random

0 1024 2048
0
8

16
24
32

Samsung 16 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 16 MB
Random

0 512 1024
0
8

16
24
32

Seagate 16 MB
Sequential

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Random

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Sequential

of writes
0 1280 2560

0
8

16
24
32

WD 16 MB
Random

of writes
0 1024 2048

To
ta

l d
at

a(
M

B)

0
8

16
24
32

WD 16 MB
Sequential

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Random

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Sequential

All Results

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

0 512 1024
0
8

16
24
32

Hitachi 32 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
8

16
24
32

Hitachi 32 MB
Sequential

0 512 1024
0

16
32
48
64

Samsung 8 MB
Random

0 512 1024
0

16
32
48
64

Samsung 8 MB
Sequential

0 1024 2048
0

32
64
96

128

Samsung 16 MB
Random

0 1024 2048
0
8

16
24
32

Samsung 16 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 16 MB
Random

0 512 1024
0
8

16
24
32

Seagate 16 MB
Sequential

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Random

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Sequential

of writes
0 1280 2560

0
8

16
24
32

WD 16 MB
Random

of writes
0 1024 2048

To
ta

l d
at

a(
M

B)

0
8

16
24
32

WD 16 MB
Sequential

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Random

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Sequential

All Results

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

0 512 1024
0
8

16
24
32

Hitachi 32 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
8

16
24
32

Hitachi 32 MB
Sequential

0 512 1024
0

16
32
48
64

Samsung 8 MB
Random

0 512 1024
0

16
32
48
64

Samsung 8 MB
Sequential

0 1024 2048
0

32
64
96

128

Samsung 16 MB
Random

0 1024 2048
0
8

16
24
32

Samsung 16 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 16 MB
Random

0 512 1024
0
8

16
24
32

Seagate 16 MB
Sequential

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Random

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Sequential

of writes
0 1280 2560

0
8

16
24
32

WD 16 MB
Random

of writes
0 1024 2048

To
ta

l d
at

a(
M

B)

0
8

16
24
32

WD 16 MB
Sequential

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Random

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Sequential

All Results

0 512 1024
0
2
4
6
8

10

Hitachi 8 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
2
4
6
8

10

Hitachi 8 MB
Sequential

0 512 1024
0
8

16
24
32

Hitachi 32 MB
Random

0 512 1024

To
ta

l d
at

a(
M

B)

0
8

16
24
32

Hitachi 32 MB
Sequential

0 512 1024
0

16
32
48
64

Samsung 8 MB
Random

0 512 1024
0

16
32
48
64

Samsung 8 MB
Sequential

0 1024 2048
0

32
64
96

128

Samsung 16 MB
Random

0 1024 2048
0
8

16
24
32

Samsung 16 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 8 MB
Random

0 512 1024
0
8

16
24
32

Seagate 8 MB
Sequential

0 512 1024
0
8

16
24
32

Seagate 16 MB
Random

0 512 1024
0
8

16
24
32

Seagate 16 MB
Sequential

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Random

of writes
0 512 1024

0
16
32
48
64

Seagate 32 MB
Sequential

of writes
0 1280 2560

0
8

16
24
32

WD 16 MB
Random

of writes
0 1024 2048

To
ta

l d
at

a(
M

B)

0
8

16
24
32

WD 16 MB
Sequential

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Random

of writes
0 512 1024

0
20
40
60
80

WD 64 MB
Sequential

All Results

Result Summary
Some drives are easy to coerce

• Hitachi
Some drives are harder

• Western Digital

Families of drives seem to be similar

Challenges

• Random policies

• Increasing cache sizes

CCE: Outline

Disk Caching: A Study

Coerced Cache Eviction

Discreet-mode Journaling: Using CCE

Results

Discreet Journaling
discreet |disˈkrēt|
 adjective (discreeter, discreetest)
 careful and circumspect in one's speech or actions,
 especially to avoid causing offense:
 we made some discreet inquiries.

Discreet Journaling
• Use CCE to discreetly enforce write ordering

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

Memory

Disk

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

data

Memory

Disk

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode data

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

T
b

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

data

T
b

T
e

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode bit
map

inode bit
map

dataT
b

T
e

Typical Journaling
Example: File Append

• Write data

• Write TxBegin+contents

• Write TxEnd

• Checkpoint inode, bitmap

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

inode bit
map

dataT
b

T
e

Memory

Disk

inode
bit

map

Discreet Journaling
Same basic protocol

• e.g., data in place, metadata to journal, etc.
Additions

• On-disk flush zone

• CCE at all ordering points;
writes issued to flush zone to flush cache

Jo
ur

na
l

Fi
le

 S
ys

te
m

 P
ro

pe
r

Fl
us

h
Z

on
e

CCE: Outline

Disk Caching: A Study

Coerced Cache Eviction

Discreet-mode Journaling: Using CCE

Results

Performance
Benchmark

• Postmark
Vary

• Tx size
Plot

• Total time (s)

Results

• Performance
without trust

Ordered journal mode

Postmark transactions
1K 2K 4K 8K

Ti
m

e
(s

ec
on

ds
)

0

500

1000

1500

2000
18

1 28
0 51

1

10
32

15
9 26

7 50
9

10
71

13
1 21

6 40
4

84
3

regular w/o cache
discreet (costly flush)
regular w/ cache

Summary
Disk caches

• What if we don’t trust them to flush?

Coerced Cache Eviction

• Method to enforce ordering without trust

Discreet ext3

• Uses CCE to build crash-consistent write
protocol without explicit disk support

• Performance is good enough (usually)

• Depends strongly on exact replacement algorithm

Orderless File Systems

Classic Approach: ext2
One classic approach: ext2-style consistency

• Write blocks to disk in any order

• Upon crash, run fsck to fix before mount

Problems

• Slow: Check time is prohibitive
(and have to fully check before mount)

• Weak: Doesn’t provide many guarantees

Can we do better?

NoFS
NoFS: No-order File System

• Writes blocks to disk in any order

• Provides reasonable consistency guarantees

Backpointer-Based Consistency (BBC)

• Every pointed-to object has backpointer
to object that points to it

Results

• Simple, lightweight, performant FS

• No need for ordering or pre-mount fsck

NoFS: Outline

BBC: Basic idea

Implementing NOFS

Results

Why Inconsistency Arises
Without Order

Memory

Disk

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

File 1 Deleted
(in memory)

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

File 1 Deleted
(in memory)

inode
2

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Inconsistency Arises
Without Order

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

Disk image now inconsistent

inode
2

Backpointer-Based
Consistency

Backpointer-Based
Consistency

Simple idea:

• Each pointed-to object points back at its parent

• Agreement implies consistency

Backpointer-Based
Consistency

Simple idea:

• Each pointed-to object points back at its parent

• Agreement implies consistency

Examples:

• Data block: Add pointer to its inode

• Directory block: Use existing “.” entry

• Inode: Add pointers to all directories it is in
(requires multiple back pointers in inode)

Why Consistency Arises
With BBC

Memory

Disk

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

data
1

inode
1

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

File 1 Deleted
(in memory)

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

File 1 Deleted
(in memory)

inode
2

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

inode
2

Why Consistency Arises
With BBC

Memory

Disk

data
1

inode
1

inode
2

data
2

File 1 Deleted
(in memory)

Disk image not consistent, but can detect and repair

inode
2

When To Repair?
Inode scan (i-scan)

• At mount time, scan on-disk inodes
to determine block ownership and
build consistent image

• No bitmaps persisted, must assemble!

• Key feature: Done in background

Problem: Inode accessed before i-scan is done

• But all is well: Just check each data block
on read() or write() path (slow but consistent)

Similar issues for data-block scan (d-scan) - skipped

NoFS: Outline

BBC: Basic idea

Implementing NoFS

Results

NoFS Implementation
Basic NoFS:

• Linux ext2 + backpointers

• Fat inodes to accommodate hard links
No pre-mount fsck: Mount immediately

• Just background i-scan and d-scan

Some limitations:

• No transactions (makes rename() weird)

• Lower performance before scans complete
(e.g., stat() of unverified inode)

• Assumes 4KB+backpointer atomic write

NoFS: Outline

BBC: Basic idea

Implementing NOFS

Results

Microbenchmark analysis:

• Performance similar to ext2

ext2 NoFS ext3

O
p/

s

0
100
200
300
400
500
600
700

File creation throughput

 493.8 516.9

 223.7

ext2 NoFS ext3

O
p/

s

0
100
200
300
400
500
600
700
800
900

File deletion throughput

 731.4 695.6

 399.4

ext2 NoFS ext3

IO
PS

0
20
40
60
80

100
120
140
160

Random read throughput

 120.5 121.4 119.7

ext2 NoFS ext3

IO
PS

0
10
20
30
40
50
60
70
80
90

Random write throughput

 70.9 71.5 69.0

ext2 NoFS ext3

M
B/

s

0
10
20
30
40
50
60
70
80
90

Sequential read bandwidth

 74.5 74.3 74.4

ext2 NoFS ext3

M
B/

s

0
10
20
30
40
50
60
70
80
90

Sequential write bandwidth

 69.6 70.7
 60.0

Performance

Performance (Periodic Sequential Write):

• Cost felt while periodic scans run

• Later: Scans complete & performance unaffected

Time (m)

Ba
nd

w
id

th
 (

M
B/

s)

0

70

35

(while scan runs) (after scan)

0 1 2 3

Summary

Consistency without ordering

• NoFS: Uses backpointers to provide
consistency without trusting disk ordering

Analysis

• Provable consistency guarantees

• Performance is usually good

• Limits: Lack of atomicity,
performance during scans

Concluding Thoughts
“The fast drives out the slow, even if the fast is wrong”

W. Kahan

Summary
Modern disks

• The “fast” thing is to report success,
even if write has not reached disk

• Formalized as weak durability

What we did

• Coerce the cache in a Discreet FS

• Avoid need for ordering with NoFS

Main goal: Build working file systems
despite the presence of weak durability

Directions

Directions
Low-level interfaces

• e.g., tell me when, not force me now

• e.g., informed read

• Are other interfaces less amenable
to cheating by device vendor?

Directions
Low-level interfaces

• e.g., tell me when, not force me now

• e.g., informed read

• Are other interfaces less amenable
to cheating by device vendor?

High-level interfaces

• The problem with fsync()

Fsync() is common!

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

St
ar

t
Im

p
D

up Ed
it

D
el

Vi
ew

St
ar

t
Im

pS
Im

pM
Pl

ay
S

Pl
ay

M

St
ar

t
Im

p
Ad

d
Ex

p

St
ar

t
O

pe
n

N
ew

N
ew

P
PD

F
PD

FP
D

O
C

D
O

C
P

St
ar

t
O

pe
n

N
ew XL

S

St
ar

t
Pl

ay
Pl

ay
P

N
ew

N
ew

P
PP

T
PP

TP

5M
B

57
M

B
12

M
B

3G
B

15
M

B
18

M
B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
KB

34
M

B
1M

B
69

M
B

3K
B

3K
B

12
KB

71
M

B
3K

B
35

M
B

7K
B

35
M

B

10
KB

3K
B

32
KB

21
KB

2K
B

9K
B

17
M

B
16

KB
34

M
B

14
KB

17
M

B

SQLite Pref Sync Archiving writeToFile FlushFork Other No fsync
Pe

rc
en

t
of

 B
yt

es
 F

or
ce

d
to

 D
is

k

Directions
Low-level interfaces

• e.g., tell me when, not force me now

• e.g., informed read

• Are other interfaces less amenable
to cheating by device vendor?

High-level interfaces

• The problem with fsync()

• Real goal: Understand what applications
actually need, instead of just build the
same POSIX file system again

Thanks!

Thanks!
Led by Professors
Andrea Arpaci-Dusseau and
Remzi Arpaci-Dusseau

Thanks!
Led by Professors
Andrea Arpaci-Dusseau and
Remzi Arpaci-Dusseau

Real work done by:
Vijay Chidambaran, Deepak Ramamurthi, Yupu
Zhang, Abhishek Rajimwale, Tyler Harter, Chris
Dragga, Mike Vaughn, Lakshmi Bairavasundaram
[papers at DSN ’11, FAST ’12, Sigmetrics ’07, FAST
’08, and SOSP ’11]

Thanks!
Led by Professors
Andrea Arpaci-Dusseau and
Remzi Arpaci-Dusseau

Real work done by:
Vijay Chidambaran, Deepak Ramamurthi, Yupu
Zhang, Abhishek Rajimwale, Tyler Harter, Chris
Dragga, Mike Vaughn, Lakshmi Bairavasundaram
[papers at DSN ’11, FAST ’12, Sigmetrics ’07, FAST
’08, and SOSP ’11]

More @ www.cs.wisc.edu/adsl

