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Journaling File System
What is goal of journaling?

• Crash consistency

How achieved?

• Use write-ahead log to record 
info about pending update

• If crash occurs during update,
just replay what is in log to repair

Turns multiple writes into single 
atomic action
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Example: File Append
What does file append do?

• Allocates new data block

• Fills data block with user data from write()

• Adds pointer to data block in metadata
structure of file system (called an inode)
 

What on-disk structures are modified?

• Bitmap (to allocate block)

• Inode (to point to new block)

• Data block (to hold user data)
 

Must all be done atomically
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Does This Work?
Is It Correct?



Assumptions About
The “Perfect” Disk
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The read after write property



Ordering



Ordering
On-disk (init)

• @A=d1 and @B=d2



Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)



Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)

On-disk (after first write)

• @A=d1’ and @B=d2



Ordering
On-disk (init)

• @A=d1 and @B=d2

Action

• write(@A, d1’)

• write(@B, d2’)

On-disk (after first write)

• @A=d1’ and @B=d2
On-disk (after second)

• @A=d1’ and @B=d2’
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Single-Sector Atomicity
On-disk (init)

• @A=d1

Action

• write(@A, d1’)

On-disk (fini)

• If write size == single sector (512 bytes):
@A=d1’

• If write size >= single sector:
@A=(mix of d1 and d1’)
(usual case without power loss: @A=d1’)



But Are Disks Perfect?
Unfortunately, no!

Some older problems

• Latent sector errors (LSEs)

• Can’t read a certain block

•Block corruption

• Can read a block but get wrong data

• See [Bairavasundaram ’07, ’08] for details
on frequency and other fun facts

And a newer problem...
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Modern Disk Caches
Caches: Critical for performance

• Cache tracks on reads

• Buffer writes before 
committing to surface

Example: Why buffering matters

• Write to random blocks

• Vary size of write requests

• Measure average write time
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Caching + Writes
Caching: Handle with care during writes

• Why? Need careful ordering to 
implement modern update protocols

• Goal: Crash consistency

Modern approaches require ordering

• Journaling file systems (e.g., ext3)

• Copy-on-write file systems (e.g., ZFS)

Trust cache flush to enforce ordering

• Write(A), Flush, Write(B);
“guarantees” A reaches disk before B
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Should We Trust Flush?
Experts say “it depends”:

• Some drives ignore barriers/flush

Documentation hints at problem:

• From the fcntl man page on Mac OS X:
• F_FULLSYNC: Does the same thing as fsync(2) then asks the 

drive to flush all buffered data to device. Certain FireWire 
drives have also been known to ignore the request to flush 
their buffered data.

• From VirtualBox documentation:
• If desired, the virtual disk images can be flushed when the 

guest issues the IDE FLUSH CACHE command. Normally 
these requests are ignored for improved performance.
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Weak Durability
On-disk (init)

• @A=d1
  

Action

• write(@A, d1’) at time=T

In-cache (fini)

• @A=d1’ (delay write by delta time units)
On-disk (fini)

• @A=d1 (time < T+delta)

• @A=d1’ (time > T+delta && no power loss) or

• @A=d1 (power loss at time < T+delta)



Dealing with
Weak Durability



Outline

Method #1: Coerced Cache Eviction

Method #2: No-order File System

Final Thoughts



Coerced Cache 
Eviction



How to Reduce
Trust on Disk Ordering?
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Idea: Coercion
Desire: Enforce ordering of Write(A), Write(B)

Method:

• Write (A)

• Write a bunch of other stuff
(evicting A from cache in process)

• Write (B)

Called Coerced Cache Eviction (CCE)

• Use CCE to build FS that works despite
faulty disk behavior



CCE: Outline

Disk Caching: A Study

Coerced Cache Eviction

Discreet-mode Journaling: Using CCE

Results
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Goal: Learn Policy
To build CCE, must know eviction policy

• But, not published or well-known

Idea: Use microbenchmark to discover

• Write target eviction block T to disk

• Perform series of writes, varying
number, data amount, sequential/random

• Read back T and measure latency of read

• If read is “slow”, T was on disk;
if read is “fast”, T was still in memory
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Graphs: Sequential and Random patterns
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Results
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• Over 2MB always flushes cache
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Seagate Disk

Seagate flush strategy:

• No amount of sequential writes flush cache

• Random writes do better (but not LRU)

Seagate (8MB cache)
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Result Summary
Some drives are easy to coerce

• Hitachi
Some drives are harder

• Western Digital

Families of drives seem to be similar

Challenges

• Random policies

• Increasing cache sizes
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Discreet Journaling
discreet |disˈkrēt|
  adjective ( discreeter, discreetest )
  careful and circumspect in one's speech or actions,
  especially to avoid causing offense: 
  we made some discreet inquiries.

Discreet Journaling
• Use CCE to discreetly enforce write ordering
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Discreet Journaling
Same basic protocol

• e.g., data in place, metadata to journal, etc.
Additions

• On-disk flush zone

• CCE at all ordering points;
writes issued to flush zone to flush cache
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Performance
Benchmark
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Summary
Disk caches

• What if we don’t trust them to flush?

Coerced Cache Eviction

• Method to enforce ordering without trust

Discreet ext3

• Uses CCE to build crash-consistent write 
protocol without explicit disk support

• Performance is good enough (usually)

• Depends strongly on exact replacement algorithm



Orderless File Systems



Classic Approach: ext2
One classic approach: ext2-style consistency

• Write blocks to disk in any order

• Upon crash, run fsck to fix before mount

Problems

• Slow: Check time is prohibitive
(and have to fully check before mount)

• Weak: Doesn’t provide many guarantees

Can we do better?



NoFS
NoFS: No-order File System

• Writes blocks to disk in any order

• Provides reasonable consistency guarantees

Backpointer-Based Consistency (BBC)

• Every pointed-to object has backpointer 
to object that points to it

Results

• Simple, lightweight, performant FS

• No need for ordering or pre-mount fsck



NoFS: Outline

BBC: Basic idea

Implementing NOFS

Results
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Backpointer-Based 
Consistency

Simple idea:

• Each pointed-to object points back at its parent

• Agreement implies consistency

Examples:

• Data block: Add pointer to its inode

• Directory block: Use existing “.” entry 

• Inode: Add pointers to all directories it is in
(requires multiple back pointers in inode)
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When To Repair?
Inode scan (i-scan)

• At mount time, scan on-disk inodes
to determine block ownership and
build consistent image

• No bitmaps persisted, must assemble!

• Key feature: Done in background

Problem: Inode accessed before i-scan is done

• But all is well: Just check each data block
on read() or write() path (slow but consistent)

Similar issues for data-block scan (d-scan) - skipped
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NoFS Implementation
Basic NoFS:

• Linux ext2 + backpointers

• Fat inodes to accommodate hard links
No pre-mount fsck: Mount immediately

• Just background i-scan and d-scan

Some limitations:

• No transactions (makes rename() weird)

• Lower performance before scans complete 
(e.g., stat() of unverified inode)

• Assumes 4KB+backpointer atomic write
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Microbenchmark analysis:

• Performance similar to ext2

ext2 NoFS ext3
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Performance

Performance (Periodic Sequential Write):

• Cost felt while periodic scans run

• Later: Scans complete & performance unaffected

Time (m)

Ba
nd

w
id

th
 (

M
B/

s)

0

70

35

(while scan runs) (after scan)

0 1 2 3



Summary

Consistency without ordering

• NoFS: Uses backpointers to provide
consistency without trusting disk ordering

Analysis

• Provable consistency guarantees

• Performance is usually good

• Limits: Lack of atomicity, 
performance during scans



Concluding Thoughts
“The fast drives out the slow, even if the fast is wrong”

W. Kahan



Summary
Modern disks

• The “fast” thing is to report success,
even if write has not reached disk

• Formalized as weak durability

What we did

• Coerce the cache in a Discreet FS

• Avoid need for ordering with NoFS

Main goal: Build working file systems
despite the presence of weak durability
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to cheating by device vendor?
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High-level interfaces

• The problem with fsync()



Fsync() is common!

0%

20%

40%

60%

80%

100%

iPhoto iTunes iMovie Pages Numbers Keynote

St
ar

t
Im

p
D

up Ed
it

D
el

Vi
ew

St
ar

t
Im

pS
Im

pM
Pl

ay
S

Pl
ay

M

St
ar

t
Im

p
Ad

d
Ex

p

St
ar

t
O

pe
n

N
ew

N
ew

P
PD

F
PD

FP
D

O
C

D
O

C
P

St
ar

t
O

pe
n

N
ew XL

S

St
ar

t
Pl

ay
Pl

ay
P

N
ew

N
ew

P
PP

T
PP

TP

5M
B

57
M

B
12

M
B

3G
B

15
M

B
18

M
B

4M
B

89
M

B
22

M
B

3M
B

2M
B

24
KB

34
M

B
1M

B
69

M
B

3K
B

3K
B

12
KB

71
M

B
3K

B
35

M
B

7K
B

35
M

B

10
KB

3K
B

32
KB

21
KB

2K
B

9K
B

17
M

B
16

KB
34

M
B

14
KB

17
M

B

SQLite Pref Sync Archiving writeToFile FlushFork Other No fsync
Pe

rc
en

t 
of

 B
yt

es
 F

or
ce

d 
to

 D
is

k



Directions
Low-level interfaces

• e.g., tell me when, not force me now

• e.g., informed read

• Are other interfaces less amenable
to cheating by device vendor?

High-level interfaces

• The problem with fsync()

• Real goal: Understand what applications
actually need, instead of just build the
same POSIX file system again



Thanks!
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