
AutoStream: Automatic Stream
Management for Multi-stream SSDs

Jingpei Yang, PhD, Rajinikanth Pandurangan, Changho Choi, PhD, Vijay Balakrishnan

Memory Solutions Lab
Samsung Semiconductor

Agenda

• SSD NAND flash characteristics

• Multi-stream

• Autostream: Automatic stream management

– Multi-Q

– SFR

• Performance enhancement

• Summary

2

SSD NAND Flash Characteristics
• Different IO units

– Read/Program: Page, Erase: Block (=multiple of pages)

• Erase before program
– Out-of-place update

• Unavoidable GC overhead
– The higher GC overhead, the larger Write Amplification*(= the lower endurance)

• Limited number of Program/Erase cycles

To maximize SSD lifetime, need to minimize Write Amplification!

∗ 𝑊𝐴𝐹(𝑊𝑟𝑖𝑡𝑒 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)

=
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑡𝑜 𝑁𝐴𝑁𝐷 𝐹𝑙𝑎𝑠ℎ

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 ℎ𝑜𝑠𝑡

3

Multi-stream: Minimize Write Amplification
• Store similar lifetime data into the same erase block and reduce WA (GC overhead)

• Provide better endurance and improved performance

• Host associates each write operation with a stream

• All data associated with a stream is expected to be invalidated at the same time (e.g., updated,
trimmed, unmapped, deallocated)

• Align NAND block allocation based on application data characteristics(e.g., update frequency)

4

AutoStream: Automatic Stream Management

• Multi-stream shows good benefit but requires application and system modification
– More challenges in multi-application, multi-tenant environments (e.g., VM or Docker)

• AutoStream
– Make stream detection independent of applications (e.g., in device driver)

– Cluster data into streams according to data update frequency, recency and sequentiality

– Minimize stream management overhead in application and systems

Application

Device Driver Device Driver

Application

AutoStream
Automatic stream

management based on
data characteristics

Applications manage
streams

Filesystem, block
layer, etc.

Filesystem, block
layer, etc.

No app. & Kernel
modification required

App. & Kernel modification req’d
Stream sync overhead

Multi-stream

5

AutoStream IO Processing with Minimal Overhead

READ I/O
bypass

AutoStream

WRITE I/O
just one

table look up

6

AutoStream Implementation

application

File system

Device driver

OS kernel

Multi-Q
queue update

SFR
table update

AutoStream
controller

<sLBA, sz>

<sID>

Write <sLBA, sz>

Multi-stream SSD

Submission queue

1

2

3

Block layer

AutoStream module

<sLBA>

Write<sLBA, sz, sID>

TL

4

7

Multi-Q Algorithm Basics
• Divide a whole SSD space into the same size chunks

– 480GB SSD, 1MB chunk size -> 480,000 chunks

• Track statistics for each chunk

– access time, access count, expiry time, etc.

– Expiry time

• hottest chunk’s lifetime := current time – last access time

• Other chunk’s expiry time:= current time + hottest chunk’s lifetime

chunk id …… c c x y z u w c

access time …… 4 5 6 7 8 9 10 11

access count …… 1 2 1 1 1 1 1 3

Hottest chunk = c

Chunk c’s lifetime = 11 – 5 = 6
Access time 12:

chunk d expiry time = 18 (12+6)

d

12

1

Access time 11:

8

Multi-Q Update (Promotion & Demotion)

d

a

f

Q1 Q7

Submission Q

… c b c a f

Multi-Q thread processes
each entry

b

…

…

…

a e

Q2

e

c

Q8
cold hot

Promotion Demotion

head

. . .

. . .

. . .

tail

Chunk a’s access count is bigger
than Q1’s access count threshold
(frequency)

Chunk e’s expiry
time has passed
(recency*)

* Recency considers the last updated time

…

e

a

9

SFR - SequentialityFrequencyRecency Algorithm

Sequential
write?

sID :=
prev_sID

Get sID from
stream table

Update prev_sID

Put sLBA to
submission queue

Submission Q

… c b c a f

SFR thread processes
each entry

Increase access_cnt

Calculate recency_weight :=
pow(2, (curr_time – last_acess_time)/decay_period)

access_cnt := access_cnt/recency_weight

sID := log(access_cnt)

Sequentiality
Stream table update
(Frequency, Recency)

AutoStream
controller <sLBA, sz>

yes no

10

Docker Environment Performance Measurement

Database Size Workload

MySQL
TPC-C

800 warehouse
TPC-C: 30

connection

Cassandra
-Stress

1KB record, 100
million entries

r/w: 50/50

42% 39%

0

1

2

3

4

5

legacy SFR MQ

WAF

144%
129%

0

200

400

600

800

1000

1200

legacy SFR MQ

MySQL average tpmC
6%

2%

21000

21500

22000

22500

23000

23500

legacy SFR MQ

Cassandra average TPS

• Running 2 MySQL & 2 Cassandra instances
simultaneously

11

Summary
• AutoStream

– With no application and system modification, improve SSD
lifetime and performance

• AutoStream with minimal overhead
– Works well under different workloads for diverse applications on

various system environments
– Up to 60% WAF reduction
– Up to 237% performance improvement

• Future work
– Optimize resource utilization and performance to fit into devices

12

