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ABSTRACT
We propose Chaperone, a new runtime system which im-
plements an innovative binary-level instrumentation tech-
nique that bounds performance degradation of around
14% on average of the total applications execution time,
hence it can be used by users in production deployments.
Our technique is called Partial Binary Translation. It
consists of translating the entire code image and inserting
required instrumenting stubs in the translated code at
loadtime, and at runtime, differently from normal instru-
mentation, switching the execution dynamically between
original and instrumented code. Using this technology
we demonstrate two different use cases of the Chaperone
system. The first is a runtime memory checker that de-
tects memory accesses outside the legally allocated heap
memory bounds. The second is a dynamic performance
tuning of OpenMP applications by automatically setting
the optimal number of active OpenMP threads and affini-
tizing them to the available cores. In both cases we mea-
sured low overhead of Chaperone. Moreover, Chaperone
shows minimal performance degradation for the Memory
Checker and improved performance for OpenMP based
applications.

1 INTRODUCTION
In the future, we predict that most applications will be
run under the management and the tracking of some
runtime system. Managed applications written in Java
and .NET are running today under a runtime system
and already benefit from useful runtime services such
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as the memory garbage collection, profiling services and
even runtime optimizations. Programming frameworks
such as OpenMP or OpenCL already include a runtime
library that manages the distribution of tasks to the
different processing units. The LLVM [10] compilation
strategy is designed to enable staged optimizations start-
ing from compile-time through link-time and finally at
runtime by supporting profile-driven optimizations. How-
ever, applications are becoming more and more complex
and so are the requirements from these runtime systems
along with the requirement to not cause any noticeable
performance regression while monitoring the execution.
A subsystem that is able to efficiently monitor and trace
a running application without degrading its performance
will be able to provide new valuable functionalities. It
will able to inform the user about issues during the appli-
cation execution such as exceeding legal memory bounds
used by hacking systems to attack the application. It
will be able to detect and warn when entering inefficient
computation phases such as long busy wait loops, or
alternatively entering rarely executed code areas indi-
cating some possible new untested input scenario was
provided. It will also be able to record history for post-
processing analysis, actively apply performance tuning
or even apply fault recovery when possible. Consequently,
applications will be less vulnerable to attacks, more fault
tolerant and more energy efficient.

In this work we introduce the Chaperone system that
uses static binary translation to generate a translation
of the entire executable code that resides in a specific
memory area called Translation Cache (TC). Chaperone
implements Partial Binary Translation that enables run-
time binary instrumentation with minimal overhead. It
performs the complete analysis of the executable code
once at loadtime and the generates the translated code
along with the appropriate instrumentation stubs.
In the next sections we describe the design of the

Chaperone system and its components followed by a
description of two different use cases of the Chaperone
technology implemented in two different ways. The first
is a memory checker tool that detects illegal memory
accesses at runtime implemented using the Intel Pin
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SDK [6] that provides convenient interface to instrument
executables at runtime. The second use case is a runtime
tuning subsystem for OpenMP applications. In here
we used the 𝐿𝐷 𝑃𝑅𝐸𝐿𝑂𝐴𝐷 Linux mechanism to pre-
load the TR library and run its main binary translation
routine before the application’s libraries are loaded and
run.

2 DESIGN
The Chaperone introduces a technology called Par-
tial Binary Translation (PBT) in which the execu-
tion is diverted from the original code to the trans-
lated/instrumented code at runtime for only part of the
time before returning execution back to the original code.
In PBT, both the original code and the translated code
execute periodically, as opposed to regular Binary Trans-
lation [7] where only the translated code or the original
code is executed for a given code area throughout the ap-
plication run. To enable the PBT mode, the Chaperone
system, creates a thread (in addition to the applications
thread), which is in charge of periodically patching the
original code with direct jumps to a jump table consist-
ing of indirect jumps to the corresponding locations at
the translated code and vice versa, i.e., translated code
is patched by returning jumps to corresponding original
code sites via the indirect jump tables. We refer to the
process of injecting direct jumps to the translated code
as the 𝐶𝑜𝑚𝑚𝑖𝑡 step and the opposite process of insert-
ing jumps back from translated code to original code
as the 𝑈𝑛𝑐𝑜𝑚𝑚𝑖𝑡 step. In both cases, the application
continues to run while the jump instructions are patched
atomically to the code.

Figure 1 shows the memory organization of the Chap-
erone system allocated at load time. The memory area
on the left is the original image of the application com-
prising of the binary code, its static data and its dy-
namically linked libraries. The next memory area from
left is the TR’s memory containing all the routines in
charge of analyzing, translating and instrumenting the
original code and placing it in the TC on the right. The
next memory area from the left is used by the thread
committer-uncommitter (TCU) containing the code of
the routines in charge of the commit and uncommit steps.
All translated and instrumented code are executed from
the TC shown on the right. The arrows at the bottom
represent the control flow between the memory areas at
runtime.

There are several motivations for using PBT to support
the Chaperone implementation. Most importantly, there
is no overhead at all and no modifications to the running
binary when Chaperone is disabled. In this mode the
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Figure 1: Logical memory organization of the
Chaperone system.

commit-uncommit thread is put on a sleep state right
after applying the uncommit phase. In this mode it is
waiting for an external event to wake it up. Another
motivation is the fact that there is no need to manage
the TC as it is set once to a fixed size at load time and
does not require a protocol for selecting which translated
code to flush out at runtime due to space limitations.
The main drawback of a PBT system over a FBT

system is the introduction of a new overhead type called
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 time which is the time required for the exe-
cution to change from the original code to the TC and
back. In our case, the Transition time is immediate as
we patch the code with required direct jump instructions
at runtime without stopping the application. Another
disadvantage is the limitation on the type of instrumen-
tation that can be supported by a PBT system as it
is applied only part of the total execution time. This
means that instrumentation that requires full execution
time such as emulation cannot be supported by it. In
addition, in order for the proposed Chaperone system to
be able to manage a running application there are two
main requirements that need to be met:

∙ The instrumentation code stubs must be persistent
and consistent, i.e., 𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 to every correspond-
ing instruction in the original code. Otherwise the
commit-uncommit phases will cause an inconsistent
state during execution.

∙ The 𝑡𝑒𝑥𝑡 size of original code must not exceed a
4GB of size and the expanded instrumented code
must not exceed 8GB in order for the patched
direct jump instructions to reach the jump tables.
This is an architectural limitation that is defined
by the maximal range of 4GB that a direct long
jump in x86 can reach.
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In order to minimize the amount of code patching
during runtime, the commit-uncommit thread injects
only direct unconditional jumps - each of which is 5
bytes long covering up to 4GB of code size, from the
executing code to a corresponding jump table located
above or below the code image. Figure 2 shows the jump
tables and the unconditional jumps that are injected by
the commit-uncommit thread in the original code for
the case of the commit stage and in the translated code
for the uncommit stage.
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Figure 2: The Commit and Uncommit steps

3 THE TRANSLATOR (TR)
As mentioned in the introduction, the TR operates only
at loadtime after the application image was loaded and
just before it starts to execute, The translator is in
charge of allocating the memory for the TC and the
jump tables, analyzing the executable code, translating
the code along with the needed instrumentation stubs,
placing it in the TC and populating the jump tables with
appropriate indirect jumps. In traditional BT systems
where the TC size is limited, the TR is also responsible
for the management of the TC and to determine which
translation should be removed to make room for a new
one. However, in the Chaperone system we can compute
the needed maximal amount of instrumented code at
load time thus we can rely on the fact that the TC is
sufficiently large and its size is fixed. The TR applies 7
sequential steps before returning control to the loader
in order to start executing the application:

Step 0: Checking the execution environment.
In this step the TR checks for the number of
available cores and the CPU ID for the supported
instruction set features the size of the data
cache line. It also checks the image permissions
and modes as they may need to be modified to

Writable when patching the jump instructions
at the commit stage. In this step the TR checks
for any available profile file in case that previous
executions of the applications instrumented code
had been recorded.

Step 1: Allocating required memory. This step
requires a calculation of the size of the executable
sections along with required instrumentation code
in order to allocate the needed TC and the needed
jump tables. The jump tables are allocated as close
as possible to the application image that is to
be translated and instrumented. If the size of the
image is larger than 4GB, then 2 jump tables may
be allocated to cover it - one before its top lowest
address and one after its highest address. If no
such memory is available then the TR exits with
an error message and the original execution of
the application continues without the Chaperone
enabled.
Note that the TR is also responsible for allocating
all data structure needed for the disassembly phase
and for holding all instrumentation routines that
are invoked from the TC.

Step 2: Analyzing original code. In this step
the TR applies an incremental disassembly on the
original code in order to dissect it into instruc-
tions, basic blocks and routines and separate code
from data. In the analysis step all instructions are
placed in an internal representation data structure.
In our case we used a simple map array called
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝 for all the disassembled instruc-
tions and maintained additional field for each direct
jump or call instruction to hold the target array
entry of the jump/call. The disassembly starts
by decoding the instruction starting at the entry
point of the program as provided by the image
file format. In our implementation we use the x86
Encoder Decoder (XED) SDK [5] to decode the
x86 instructions. The disassembly process then
proceeds according to the control flow as follows:

(1) If the decoded instruction is not a control trans-
fer instruction, then continue to decode the next
instruction at current IP + size of previous de-
coded instruction.

(2) If the instruction is a conditional branch, add
the target address into a queue of unvisited entry
points and continue to decode the fall through
instruction.

(3) If the decoded instruction is a 𝐶𝑎𝑙𝑙 instruction,
add the target call address into the entry points
queue and continue to the next instruction.
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(4) Unconditional branches (direct or indirect) in-
cluding 𝑟𝑒𝑡 instructions (with the exception of
𝑐𝑎𝑙𝑙 instructions) stop the disassembly as we can-
not guarantee that the following instruction is
indeed code. In this case, extract the first entry
point address from the queue of entry points and
continue analyzing from there.

(5) Invalid decoded instructions naturally stop the
disassembly at the previous instruction and the
disassembly continues from next address in the
entry points queue.

At the end of the process if uncovered code exceeds
a threshold of 5% of the entire code size, then the
Chaperone finishes with an error message of a non
fully analyzed binary and the application execution
continues without it.
Routines and Basic Block are also dissected during
the analysis phase. For basic blocks every branch
instruction terminates a basic block whereas ev-
ery target of a direct jump/call starts a new one.
Routine boundaries are mostly extracted using the
symbolic and relocation tables in the file format,
but also from targets of call instructions.

Step 3: Generating translated code. The disas-
sembled code is placed in the internal represen-
tation in the required level: routine, basic block
or instruction. The instrumentation routines of
Chaperone are written in C++ as part of the TR
source and are called directly to and from the TC
memory area. In our experiments we used the Intel
Pin SDK [6] to write the TR as a Pin tool and
implemented the needed instrumentation functions
in it. The instrumentation stubs were inserted into
the translated code in the TC and consisted of:

(1) the instructions for saving the registers context
into the stack (including the FLAGS and the
stack registers). All saved registers are placed in
an offset of −128 bytes from current stack pointer
in order to avoid writing on the function’s stack
red zone.

(2) setting the needed values to be passed to the
instrumentation fuction into registers

(3) an indirect call to the corresponding instrumen-
tation function in the TR

(4) the instructions for restoring the context back.
Step 4: Chaining. In this step the TR goes over

the 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝 and checks for targets of di-
rect jumps or calls that need to branch to a new
target address. At this point only the internal data
structure is modified to hold the correct target
entry in the 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝 for each direct jump
or call.

Step 5: Encoding. In this step the instructions are
encoded directly into the TC one after the other.
All rip-based, direct branch and direct call dis-
placements are updated in the encoded instructions
based on the relocation of target instructions. For
forward jump instructions that branch over code
that is not yet encoded, the maximal displacement
encoding is used. As a result, the step requires sev-
eral iterations until the displacements of all long
and short branches are fully resolved.
In this step the TR also populates the jump tables
and prepares a patching list of all addresses that
need to be patched with an unconditional jump
instruction by the TCU. The list includes a pair
of an original code address and its corresponding
translated code address. There are two main con-
siderations in selecting the instructions that are
to be patched by the unconditional direct jumps.
The first consideration is to minimize the transi-
tion time between the TC and the original code on
every commit and uncommit step. The assumption
is that frequently executed code is found in either
loops or a chain of frequent routine calls. Therefore,
direct backward jumps and direct call instructions
make a sufficient coverage of these cases.
Another consideration is the ability to perform the
patching atomically while the application is run-
ning and still be able to reach the jump table with
a single direct jump. In x86 architecture, a 𝑚𝑜𝑣
instruction of 8 bytes is guaranteed to be atomic
unless the memory address crosses a cache line
boundary. Consequently, the following instructions
addresses are added to the patching list provided a
32 byte d-cache line boundary does not cross them
on the first 2 bytes:
∙ Address of every direct call instruction. Direct
call instructions in x86 are 5 bytes long.

∙ Address of every direct backward jump that is
of size larger or equals to 5 bytes. Instructions
smaller than 5 bytes cannot be patched by a
direct jump instruction that can reach the rele-
vant entry in the jump table. At the same time,
atomically patching two or more consecutive in-
structions is not possible either as the system
cannot guarantee that the applications processes
(or threads) will not attempt to execute one of
partially patched instructions during the patch-
ing step.

∙ Address of a target of a backward jump that is
smaller than 5 bytes provided the target instruc-
tion is of size larger or equal to 5 bytes. If the
target instruction is shorter than 5 bytes then
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the proceeding instruction in the basic block is
checked as a candidate for patching.

Step 6: Kick start the TCU. The TR kick starts
the TCU by setting the global volatile variable
𝑒𝑛𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑚𝑖𝑡 𝑢𝑛𝑐𝑜𝑚𝑚𝑖𝑡 𝑓𝑙𝑎𝑔 to 𝑡𝑟𝑢𝑒 and apply
the x86 𝑚𝑓𝑒𝑛𝑐𝑒 instruction to fulsh the store
buffer.

4 THE THREAD
COMMITTER-UNCOMMITTER
(TCU)

As explained above the TCU is created together with
the TR at load time. Once created, it is waiting
in an endless loop that checks the global variable
𝑒𝑛𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑚𝑖𝑡 𝑢𝑛𝑐𝑜𝑚𝑚𝑖𝑡 𝑓𝑙𝑎𝑔. When set to true by
the TR the TCU exits the busy wait loop and enters an-
other loop that periodically applies the commit and the
uncommit phases separated by the 𝑢𝑠𝑙𝑒𝑒𝑝() system calls.
Naturally, a longer sleep interval is given to the uncom-
mit stage over the commit stage where the translated
and instrumented code is running, in order to reduce the
performance regression. Below is the main routine body
of the TCU written under the Intel Pin SDK [6]:

// Busy wait until translation completes:

while (!enable_commit_uncommit_flag);

// wait 1ms before applying 1st commit:

usleep(1);

while (true) {

// Commit translated code:

PIN_LockClient();

commit_translated_code();

PIN_UnlockClient();

// Original code is committed.

// Translated code is now running

// Wait 1ms for the application start:

usleep(1);

// Uncommit translated code:

PIN_LockClient();

uncommit_translated_code();

PIN_UnlockClient();

// Translated code is uncommitted.

// Original code is now running

// wait a longer interval of 10ms

// before applying the commit again:

usleep(10);

}

Note that the routines that apply the commit and
uncommit operations which are protected by the
𝑃𝑖𝑛 𝐿𝑜𝑐𝑘/𝑈𝑛𝑙𝑐𝑜𝑘 𝐶𝑙𝑖𝑒𝑛𝑡 APIs, apply the 𝑚𝑓𝑒𝑛𝑐𝑒 x86
instruction just before returning. This is in order to flush
any waiting stores in store buffer. The routines in charge
of patching the jumps to and from the translated code
go over the patching list that was prepared by the TR
beforehand.

At the commit stage, the TCU is in charge of injecting
the direct unconditional jumps from the original to the
jump table and to undo the injected jumps from the
translated code to the original code in the commit stage.
At the uncommit stage, the TCU performs the reversed
operation of injecting direct jumps from the translated
code back to the original code via the jump tables and
to undo the injected jumps in the original code. The
injection step of the direct jumps (in both commit and
uncommit stages) is performed by the TCU in 3 stages:

(1) The original code before being patched is saved
into a patching map located in the TR data area.
Note that only the 5 bytes of the encoded jump
instruction that are patched need to be saved.

(2) The target of the code that is to be patched is
restored back to the original code before being
patched from the patching map. The restore is done
by writing directly on to the code atomically for
the patched 5 bytes. If the patched code is located
in the original code then the page permissions
containing it must be changed to 𝑅/𝑊 using the
𝑚𝑝𝑟𝑜𝑡𝑒𝑐𝑡() system call. The actual patching is done
by writing the encoded instruction in the patching
list directly on the patched address using an atomic
code update routine described below.

(3) The code is patched with the encoded direct jump
in the patching list using the same atomic patching
step.

Since the patching is done while the application is
running and without stopping it, then it is imperative
that steps 2 and 3 above are performed atomically. As
explained in the TR section, in x86 architecture, a 𝑚𝑜𝑣
instruction of 8 bytes is guaranteed to be atomic unless
the memory address crosses a cache line boundary. In
order to patch instructions that cross a 32 byte boundary
we use 3 steps:

(1) Replace the first 2 bytes of the instruction by the
short 𝑗𝑚𝑝 −2 instruction which in fact serves as an
endless loop to itself in the event that the execution
reaches the instruction while being patched.

(2) The remaining 3 bytes are patched by the needed
encoding bytes.
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(3) The first 2 bytes are replaced to the correct 𝑗𝑚𝑝
encoding prefix.

Each of the 3 steps is performed atomically as illustrated
in Figure 3.

d-cache line d-cache line

test rax, rax

d-cache line d-cache line

test rax, rax

jmp -2

Figure 3: Atomic code update for instructions
that cross d-cache line.

5 USE CASE 1: MEMORY
CHECKER CHAPERONE

Out-of-bounds memory bugs occur when the application
dynamically allocates a block of memory, iterates on
the allocated block and falsely accesses memory outside
the bounds of the originally allocated memory. In or-
der to detect instructions that exceed a legal bound,
the TR instruments every call to the 𝑚𝑎𝑙𝑙𝑜𝑐() and
𝑓𝑟𝑒𝑒() subroutines of the C runtime library. Each call
to (𝑣𝑜𝑖𝑑*)𝑎𝑑𝑑𝑟 𝑚𝑎𝑙𝑙𝑜𝑐(𝑠𝑖𝑧𝑒 𝑡𝑠𝑖𝑧𝑒) is diverted to allo-
cate additional 16 bytes of memory which serves as a
wrapper before and after the original allocated memory
region. Consequently, the instrumented 𝑚𝑎𝑙𝑙𝑜𝑐() returns
𝑎𝑑𝑑𝑟 + 8, whereas every call to 𝑓𝑟𝑒𝑒(𝑎𝑑𝑑𝑟) de-allocates
the original size along with the extra 16 bytes starting
from 𝑎𝑑𝑑𝑟 − 8. The allocated addresses along with the
extra allocated 16 bytes of memory are tracked via a
global hash table called 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑀𝑎𝑝 located
in the TR static area.
Next, the TR instruments every instruction in the

application code image that references the memory of
the form:

𝑜𝑝 𝑠𝑟𝑐𝑅𝑒𝑔, 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑏𝑎𝑠𝑒𝑅𝑒𝑔, 𝑖𝑛𝑑𝑒𝑥𝑅𝑒𝑔, 𝑠𝑐𝑎𝑙𝑒)

e.g. 𝑚𝑜𝑣 𝑟8, 5(𝑟9, 𝑟1, 2).
In order to decode all x86 memory-based instructions

we use the Intel x86 Encoder Decoder (XED) SDK [5]
which is also available as part of the Intel Pin SDK [6].
Specifically, we use the following integrated Pin APIs
that rely on the XED library:

ADDRDELTA INS_MemoryDisplacement (INS ins)

REG INS_MemoryBaseReg (INS ins)

REG INS_MemoryIndexReg (INS ins)

UINT32 INS_MemoryScale (INS ins)

At each instrumentation stub injected before each
memory instruction we check that the address calculated
by 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡+𝑣𝑎𝑙(𝑏𝑎𝑠𝑒𝑅𝑒𝑔)+𝑣𝑎𝑙(𝑖𝑛𝑑𝑒𝑥𝑅𝑒𝑔)*𝑠𝑐𝑎𝑙𝑒
does not fall into any of the wrapping memory re-
gions that were created at the calls to 𝑚𝑎𝑙𝑙𝑜𝑐() or
to non-allocated/de-allocated regions that are not cov-
ered by the 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑅𝑒𝑔𝑖𝑜𝑛𝑠𝑀𝑎𝑝 table and if so, an
𝑜𝑢𝑡−𝑜𝑓−𝑏𝑜𝑢𝑛𝑑 message is printed out to 𝑐𝑒𝑟𝑟. To limit
the performance overhead to a minimum the commmit-
uncommit ratio in the TCU is set to 1/15 i.e., 1ms
the application runs in commit mode, i.e. instrumented,
following by 15ms of application running in uncommit
mode, that is original code.

As mentioned above, Memory Checker Chaperone was
implemented using the Intel Pin SDK [6] on the Linux
OS. The Intel Pin framework enables to write binary-
level instrumentation tools in Probe mode where all the
translation and the instrumentation is done only once
at load time. In this mode the runtime VM of Pin is not
activated and thus translation time overhead is limited
to load time.

The performance results of the Memory Checker Chap-
erone are not comparable to those obtained by other
known instrumentation tools. For example, the Val-
grind [12] instrumentation-based memory checker runs
between 5𝑥 to 55𝑥 slower than the original application
due to its heavy instrumentation stubs. The Chaperone,
however, reaches up to a 12% regression when setting
the TCU frequency to the appropriate ratio.

Figure 4 shows the performance ratio of the Memory
Checker Chaperone run time on the SPEC CPU 2006
benchmarks divided by the base run time vs. Valgrind
ratio on the ref input. The runs were measured on an
Intel Xeon machine with CPU model 𝐸5− 2699 (Code
Name Broadwell) of 2.20GHz frequency and a 128GB
of RAM memory. For these measurements we set the
TCU to a 1/15 ratio following preliminary measurements
that showed it to produce best results and still identify
out-of-bound memory operations.

Figure 5 shows the performance results when applying
the Memory Checker Chaperone on the 𝑏𝑧𝑖𝑝2 application
from SPEC CPU 2006 with different TCU frequencies,
where 1 represents 1ms spent in commit and 1ms in
uncommit whereas 10 represents 1ms in committed mode
and 10ms in uncommitted mode, and so on.

Chaperone’s main problem is the fact that it may miss
illegal out-of-bound memory accesses since only part of
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Figure 4: Chaperone MemChecker results on
SPEC CPU 2006 vs. valgrind

the execution time is spent in the instrumented code.
To check the effectiveness of the Chaperone in detecting
memory bugs we inserted artificial illegal references in
the 𝑏𝑧𝑖𝑝2 source code. The first bug was inserted in
function 𝑚𝑎𝑖𝑛𝐺𝑡𝑈 which is the hottest function of 𝑏𝑧𝑖𝑝2
taking 70% of the total execution time and located in
the file 𝑏𝑙𝑜𝑐𝑘𝑠𝑜𝑟𝑡.𝑐. The bug was the following an illegal
read access added at the top of the function:

UChar ctmp = block[-1];

where 𝑏𝑙𝑜𝑐𝑘 is a pointer supplied to the function as a
parameter. The above code did not cause 𝑏𝑧𝑖𝑝2 to fail and
Valgrind managed to detect it correctly. Interestingly,
the Chaperone managed to detect it as well for all the
TCU frequencies between 1 through 50. The second
bug which was artificially inserted was the following
illegal write access planted in a rarely executed function
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑟𝑒𝑎𝑚 in the file 𝑏𝑧𝑖𝑝2.𝑐:

*((char *)bzfp - 1) = 0;

where 𝑏𝑧𝑓𝑝 is a pointer that points to an allocated mem-
ory. The above code is executed only once at the be-
ginning of the program and while Valgrind managed to
detect it correctly, the Chaperone failed to detect it even
for the TCU frequency of 1 where 50% of the time is
spent in the original code and 50% at the instrumented
code, since the bug occurs immediately at the beginning
of the run when the original (non-instrumented) code is
running.
In general, there are ways to improve the coverage

of buggy memory accesses by the Chaperone Memory

Checker if we introduce a randomized TCU ratio. An-
other way is to use persistent memory where we log the
collected profiling data into a file which is then read
on future invocations of the application. The collected
profile information from previous runs can help Chap-
erone instrument the rarely executed code areas. We
actually implemented such a mode of persistent profil-
ing in Chaperone using the 𝑚𝑚𝑎𝑝 system call in Linux
to map all profiled data into a file and then check its
existence upon every invocation. This mode seems to be
working well for cases where Chaperone was focused on
collecting data in rarely executed code areas.
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Figure 5: Chaperone MemChecker results on
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6 USE CASE 2: OPENMP LOAD
BALANCER CHAPERONE

OpenMP applications spawn threads at runtime in or-
der to support the parallelization constructs of parallel
loops and parallel blocks (see [2]). Usually, the user sets
the maximal number of OpenMP threads that can be
spawned by the OMP runtime ahead of time for all
the parallel loops/blocks in the program by using the
environment variable 𝑂𝑀𝑃 𝑁𝑈𝑀 𝑇𝐻𝑅𝐸𝐴𝐷𝑆 or by
calling the 𝑜𝑚𝑝 𝑠𝑒𝑡 𝑛𝑢𝑚 𝑡ℎ𝑟𝑒𝑎𝑑𝑠() OMP API. This of-
ten leads to unbalanced allocation of threads, as heavy
CPU-bound loops starve for OMP threads whereas non
CPU-bound loops waste OMP threads and consume
power. In addition, the maximal number of OpenMP
threads also sets the chunk size of the loop iterations
space that is given to each thread and thus impacts the
cache conflict effects that occur between the running
tasks that accessed shared data. Consequently, finding
the optimal number of OpenMP threads for a given loop
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ahead of time is considered hard and a tool that can
find and set the optimal number of OpenMP threads at
runtime, while taking into account cache conflict effects,
can have a positive impact on performance and power
consumption. Note that OMPLB does not change the
scheduling policy and the size of the sequential 𝐶𝐻𝑈𝑁𝐾
of iterations of each parallel loop directly as dictated by
the programmers using the OpenMP 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 directive
(see [1]). Instead, it simply sets the maximal allowed
spawned threads which indirectly dictates the 𝐶𝐻𝑈𝑁𝐾
size.

In addition to setting the optimal number of threads,
the affinity of threads to available CPUs is also
done mostly ahead of time by the user by setting
global environment variables of 𝐾𝑀𝑃 𝐴𝐹𝐹𝐼𝑁𝐼𝑇𝑌 or
𝑂𝑀𝑃 𝑃𝑅𝑂𝐶 𝐵𝐼𝑁𝐷 protocols. To optimize the affinity
of threads to CPUs, OpenMP Load Balancer (OMPLB)
tracks the status of each thread and accordingly de-
taches waiting threads and attaches running threads to
the available CPUs at runtime.

The OMPLB searches and then sets the optimal num-
ber of OMP threads and then affinities them to the
available CPUs at runtime. It dynamically tries out dif-
ferent number of OMP threads, measures the elapsed
time intervals for each parallel loop invocation and then,
based on the collected time statistics, converges to the
optimal number of OMP threads.
The OMPLB was implemented using the

𝐿𝐷 𝑃𝑅𝐸𝐿𝑂𝐴𝐷 Linux environment variable which
guarantees that the shared library containing the TR
code is loaded prior to any library that is dynami-
cally linked to the OMP application. The pre-loaded
library also contains instrumented redefinitions of
the relevant OMP runtime library APIs that are
called by the application before entering and after
completing each parallel loop or parallel block in the
program. The TR is implemented in the special routine
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ((𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟)) 𝑣𝑜𝑖𝑑 𝑖𝑛𝑖𝑡 𝑙𝑜𝑎𝑑(𝑣𝑜𝑖𝑑) which

the Linux loader always executes before applying the
application’s constructors. The TR uses the 𝑙𝑖𝑏𝑒𝑙𝑓
library in order to read the application’s file format and
uses the Intel XED SDK to decode the instructions
and disassemble the code. Note that OMPLB does not
require a TCU as it uses the calls from the application
to the instrumented routines as a trigger to the
instrumentation functions in the TR.
At load time, the TR retrieves the current maximal

number of OMP threads (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚)
by calling directly to the OMP library API
𝑜𝑚𝑝 𝑔𝑒𝑡 𝑚𝑎𝑥 𝑡ℎ𝑟𝑒𝑎𝑑𝑠() along with the num-
ber of available processors in the system
(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑛𝑢𝑚) by calling the Linux

system call 𝑔𝑒𝑡 𝑛𝑝𝑟𝑜𝑐𝑠(). At the entry of every
𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑜𝑟 construct, the TR checks if there is
already a pre-calculated number of recommended OMP
threads that differs from the currently set number of
maximal omp threads and if so, it modifies it by calling
directly to the OMP API 𝑜𝑚𝑝 𝑠𝑒𝑡 𝑛𝑢𝑚 𝑡ℎ𝑟𝑒𝑎𝑑𝑠().
Then, it starts the clock for measuring the elapsed
time interval 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for the currently
set maximal threads. Next, the original code of the
𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑜𝑟 executes without any interference from
the TR and just before exiting the 𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑜𝑟,
the TR stops the clock measurement. It then calculates
the average elapsed time of the executed loop for the
currently set number of threads - 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚.
The average interval value is placed in the ar-

ray element 𝑎𝑣𝑔 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒[𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚]
which is calculated from the division of:
𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑢𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚] by
𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 𝑠𝑢𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚] where:

∙ 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑢𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚] is the
sum of all time intervals measured for
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚 for all invocations of
all parallel loops encounter so far .

∙ 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 𝑠𝑢𝑚[𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚] is
the sum of all time intervals measured for
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛𝑢𝑚 for the first invocation of
every parallel loop encountered so far.

Next, based on the above statistics, the TR searches
for the recommended number of maximal omp threads
for the next 𝑜𝑚𝑝 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑓𝑜𝑟 invocation by using
two consecutive search loops when taking into ac-
count a 10% allowed performance regression in fa-
vor of reduced power by using the constant variable
𝐴𝐿𝐿𝑂𝑊𝐸𝐷 𝑃𝐸𝑅𝐹 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 which is set to 1.1:

// 1. Apply logarithmic search for the num

// of threads that give the shortest avg

// time interval:

//

double min_time_interval =

avg_time_interval[current_threads_num];

int optimal_num_threads =

current_threads_num;

for (i = available_processors; i >= 2; i/=2) {

if (min_time_interval * ALLOWED_PERF_PENALTY

>= avg_time_interval[i]){

min_time_interval = avg_time_interval[i];

optimal_num_threads = i;

}

}

// 2. Search further in the range found

// by the logarithmic search above for

// smaller num of threads with shorter
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// time interval to reduce power:

//

int further_optimal_num_threads =

optimal_num_threads;

for(i = optimal_num_threads-1;

i > optimal_num_threads/2; i--) {

if(min_time_interval * ALLOWED_PERF_PENALTY

>= avg_time_interval[i])

further_optimal_num_threads = i;

}

optimal_num_threads =

further_optimal_num_threads;
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Figure 6: OMPLB measurements on NASA
benchmark

Figure 6 shows the runtime results for the NASA
benchmarks when setting the maximal number of threads
manually via the 𝑂𝑀𝑃 𝑁𝑈𝑀 𝑇𝐻𝑅𝐸𝐴𝐷𝑆 environ-
ment variable vs. the time measured when OMPLB
is enabled. The results were measured on the same ma-
chine that was used for the Memory Checker Chaperone
for the NASA benchmark compiled using the Class 𝐵
input size. The baseline was the runtime of the executed
benchmarks without the OMPLB.
For a small input size such as the Sample Input, the

NASA benchmarks completed withing a matter of sec-
onds and the OMPLB was actually running almost twice
longer due to its initial constant overhead of applying
its binary analysis. However, for the B class inputs, in
most cases OMPLB manages to converge to the opti-
mal result except 𝐶𝐺 - Conjugate Gradient benchmark
which contains some degree of irregular parallel loops
causing OMPLB not to converge to the optimal number
of threads.

Figure 7 shows the corresponding power measurements
on the smaller platform of 8 cores using a sampling of
the power/energy events in the CPU by the 𝑝𝑒𝑟𝑓 Linux

Table 1: Converged num of threads by OMPLB:

bt 13
cg 15
ep 29
ft 14
is 30
lu 31
mg 13
sp 8
ua 17

utility. The Linux 𝑝𝑒𝑟𝑓 package provides profile sam-
pling abilities based on supported hardware performance
counters and performance events of the CPU. For our
measurements we used the following 𝑝𝑒𝑟𝑓 𝑠𝑡𝑎𝑡 command
𝑝𝑒𝑟𝑓 𝑠𝑡𝑎𝑡 −𝑎 −𝑒 𝑝𝑜𝑤𝑒𝑟/𝑒𝑛𝑒𝑟𝑔𝑦−𝑐𝑜𝑟𝑒𝑠/𝑘 to collect the
needed results. Unfortunately, collecting power statistics
in this mode is limited but can give a rough estimate of
the power consumption trend.

OMPLB was able to show a stable reduction in power
consumption of 10% compare to the usual case of setting
the maximal number of OMP threads to the number
of available cores which in this case equals to 8. The
reduction in power is due to the fact that OMPLB has
converged to a number of threads that permits up to
10% regression. Table 1 lists the converged number of
OMP threads by OMPLB per benchmark.
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Figure 7: NASA Benchmark Power measure-
ments

7 RELATED WORKS
There are two main modes of binary instrumentation -
static and dynamic. The static binary instrumentation
produces the complete instrumented code before start-
ing to run it. Tools such as the IBM FDPR [9] used
to instrument the entire binary offline and generate the
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instrumented binary file that is then executed in order to
collect the needed performance statistics for the optimiza-
tion phase. In this mode the translation is done offline
and therefore does not affect the runtime performance.
However, the instrumented code is still very heavy and
reaches up to a 10𝑥 slowdown than the original program.
Tools that apply dynamic binary instrumentation such
as Valgrind [12], Intel Pin [6], PEBIL [11], QEMU [3],
QBDI [4], [8] apply the instrumentation in the trans-
lated code at runtime. Here the translation time affects
the performance but still, the majority of the overhead
comes from the heavy instrumentation stubs which can
reach up to 10𝑥 slowdown and higher. These tools try
to resolve the overhead by optimizing the code within
the instrumented stubs and the wrapper code that in-
vokes them. The Chaperone uses a different approach to
reduce the overhead by applying a periodic instrumenta-
tion where the instrumented code is executed only part
of the runtime. This mode is not suitable for tools that
require full instrumentation at all time such as emulation.
However, Chaperone is shown to be useful for perfor-
mance tuning and for tracking cases of out-of-bound
memory references in frequently executed code.

8 CONCLUSIONS
In this work we introduced a new approach for instru-
menting binary images that adds minimal overhead to
application execution. This approach uses what we called
partial binary translation, wherein the control flow of
the executed application is periodically diverted at run-
time from the original code to the instrumented and
translated code and back. The main idea is to atomically
patch the image of the binary with appropriate jump
instructions and without the need to stop the applica-
tion. This required taking into account the size of the
data cache line of the CPU generation and rely on the
supported atomic 𝑚𝑜𝑣 instructions in x86. As a result,
we were able to show between 8 − 22% performance
overhead with an average of 14% for instrumentation of
every load and store instruction and even serve as way
to tune performance while reducing power for OpenMP
applications. At the same time, we noticed that the pro-
posed approach is not suitable for every instrumentation
purposes such as full emulation or cases where there is a
need to instrument rarely executed code. For these cases
we propose to enable in the future a persistent memory
mode in Chaperone where previous invocations of the
system will be logged into a file and then used in future
invocations to instrument rarely executed code areas.

The Chaperone system enables the user to set the
frequency of diverting between the original and the in-
strumented code at runtime. As a result, we believe
Chaperone can be used at production level by end users
and system administrators and not only during develop-
ment.
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