
TheQuick Migration of File Servers
Keiichi Matsuzawa

Hitachi, Ltd.
Yokohama, Japan

keiichi.matsuzawa.kd@hitachi.com

Mitsuo Hayasaka
Hitachi, Ltd.

Yokohama, Japan
mitsuo.hayasaka.hu@hitachi.com

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan
shina@ecc.u-tokyo.ac.jp

ABSTRACT
Upgrading file servers is indispensable for improving the per-
formance, reducing the possibility of failures, and reducing
the power consumption. To upgrade file servers, files must
be migrated from the old to new servers, which poses three
challenges: reducing the downtime during migration, reduc-
ing the migration overhead, and supporting the migration
between heterogeneous servers. Existing technologies are
difficult to achieve all of the three challenges. We propose a
quick file migration scheme for heterogeneous servers. To
reduce the downtime, we exploit the post-copy approach
and introduce on-demand migration that allows file access
before completing the migration. To reduce the overhead, we
introduce background migration that migrates files as soon
as possible without affecting the performance and incurs
no overhead after the migration. To support heterogeneity,
we introduce stub-based file management that requires no
internal states of the old server. We implemented our scheme
for Linux and supported the NFS and SMB protocols. The ex-
perimental results depict that the downtime was a maximum
of 23 s in a 4-level 1000-file directory and the migration time
was 70 min in NFS and 204 min in SMB with 242 GiB of data.

CCS CONCEPTS
• Information systems→ Storage replication;

KEYWORDS
File server, migration, post-copy

1 INTRODUCTION
Computer systems tend to become obsolete rapidly. There-
fore, upgrading them in 3-5 years is desirable to improve the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211894

performance, reduce the possibility of failures, and reduce
the energy consumption [15, 26]. This is also applicable in
case of file servers. Upgrading file servers is one of the most
popular motivations for purchasing new file servers [30].
Therefore, smooth migration of file servers is one of the
major concerns for system administrators [29].
Upgrading file servers poses three challenges. The first

is to reduce the downtime during migration from the old
to new servers. The file servers could approximately store
400 TiB of data on an average. Therefore, the migration of
such massive amounts of data may require a few hours to
several days [30]. Terminating file services throughout the
file migration process significantly impairs the user experi-
ence. Since the file access operation typically times out in
30-120 s [16, 22], the downtime should be shorter than that.
The second is to reduce the overhead during file migration.
Since file migration consumes the server resources, it affects
the user’s file access performance. Therefore, file migration
processes should be kept as short as possible. Additionally,
there should be no overhead after the completion of the mi-
gration process because performance improvement is the
primary objective of upgrading file servers.

The third is to support migration between heterogeneous
file servers. Although production file servers will provide
migration tools between homogeneous servers, there are var-
ious cases where products and vendors of the old and new
file servers are different. For example, a vendor may provide
a more attractive product than the vendor of the old server
may. The vendor of the old server may have withdrawn from
the file server market. The old server may be a personal file
server that does not have a corresponding enterprise file
server. Therefore, upgrading file servers may introduce a
new server with an internal architecture different from that
of the old one. Furthermore, since access to the internal of
production servers may be limited, modification or running
hand-made tools in the old server may be impossible. There-
fore, the file migration scheme must be independent of the
internal architecture and functions of the old file server.
A classical but extensively used method is pre-copy mi-

gration with a file synchronization tool like rsync [31]. In
this method, the file tree is repeatedly copied from the old to
new servers until the number of updated files becomes suffi-
ciently small. Therefore, it will take a long time to complete
the overall file migration process on busy servers and incur

65

https://doi.org/10.1145/3211890.3211894

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa

continuous overhead on file server access due to the iterative
copy. Moreover, at the final stage, the access to the old server
must be terminated, and the remaining updated files must
be copied to the new server, which requires a considerably
long downtime, e.g., up to several tens of hours in case of
busy servers. This downtime could have a critical impact on
the business in a company. Post-copy migration is used in
volume-based storage systems [18, 24, 35]. However, they
assume that the file systems of the old and new storage are
identical. Systems with global namespace (GNS) could bun-
dle up multiple servers into a single namespace and support
transparent file migration between the servers [1, 34, 36].
However, they require a virtualization layer to convert the
logical file name into the physical location, which incurs a
constant overhead during file access.

In this paper, we propose a file migration scheme between
heterogeneous servers for the quick upgrading of the file
servers. To reduce the downtime during file migration, we ex-
ploit the post-copy approach. In this approach, the file server
that was accessed by the clients is immediately switched
from the old server to the new one. To allow access to files in
the new server, we introduce on-demand migration that only
migrates the existence of a file in advance and copies the
remaining data and metadata at a later instance when they
are initially accessed. This technique allows the clients to
access files before completing the overall migration process.
To reduce the migration overhead, we introduce back-

ground migration that periodically traverses the directory
tree and migrates files that have not yet been migrated in the
background. By conducting migration during idle time, we
minimize the performance impact on client file access while
reducing the duration of the overall file migration process.
After the completion of the migration process, the clients
can directly access the new file server without overhead.

To support the heterogeneous servers, we introduce stub-
based file management that manages the intermediate state of
file migration only on the new file server. Since file migration
only requires the standard file access interface to the old
server, it is not dependent on the internal structure of the
old server. Although each of the introduced techniques may
not be very novel, a combination of these techniques, which
is effective to achieve the three challenges in upgrading file
servers, has not been previously proposed.
We have implemented our scheme using a Linux kernel

and user-space programs. Our implementation supports both
NFS and SMB and can migrate files from any servers that
support these protocols. The implementation is mature and
actually used in a production system. The experimental eval-
uation illustrates that the maximum downtime was 23 s in
NFS and 7 s in SMB in case of a 4-level 1000-file directory and
that the migration time was 70 min using the NFS protocol
and 204 min using the SMB protocol with 242 GiB data.

The contributions of this paper are as follows:

• This paper identifies three challenges to upgrade the
file servers quickly and proposes a combination of
techniques that can complete these challenges.

• This paper presents a solid implementation that sup-
ports the NFS and SMB protocols in a Linux kernel,
which is mature enough to be commercialized.

• This paper demonstrates, by experimentation, that the
implementation satisfies the three challenges.

2 RELATEDWORK
2.1 Pre-Copy Migration
Pre-copy migration is a popular method that copies files
from the old to new servers beforehand iteratively and then
switches the file servers after copying all the files. Most ven-
dors suggest the usage of the pre-copy migration with a tool
such as rsync [31] and Robocopy [21]. However, this method
depicts two drawbacks. The first is the long downtime. This
method has to terminate both the old and new servers while
switching the servers to copy the files updated after perform-
ing the last copy operation. In busy servers, the sizes of the
updated files are large, and copying all of them takes a long
time. Furthermore, detecting updated files from outside of
the file server takes a long time. In our estimation, traversing
the file tree to check time-stamps via NFS in an average file
server with 400 TiB data will take approximately 28 hours.
This could be unacceptable in a company with time-critical
business. The second is the long migration time. Since the file
copy process is repeatedly performed, the busy files will be
copied multiple times. This will increase the total migration
time and continuously incur file access overhead.

2.2 Post-Copy Migration
In contrast to pre-copy migration, post-copy migration de-
fers the data copy operation and switches the access servers
first. When the new server receives an access request, the
data are copied from the old to new servers. This concept
is extensively used in memory replication such as the copy-
on-write mapping between processes in UNIX-like OSs [28]
and the memory page copies in a virtual machine (VM) live
migration [13]. ImageStreaming [24] applies the post-copy
concept to storage volumes of VMs during live migration.
However, to the best of our knowledge, the application of
the post-copy approach to perform file server migration has
not yet been proposed. Unfortunately, simply applying the
post-copy approach to file server migration compromises
the performance of the file access operation because mi-
grating files after receiving each access request increases
the response time, and the total access efficiency could be
further decreased due to the small random I/O events.

66

TheQuick Migration of File Servers SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

A natural extension of post-copy is to combine with pre-
copy. For example, some file systems provide point-in-time
snapshot [2]. In this scheme, by transferring the snapshot
data in pre-copy basis and retrieving differential data after
the transfer in post-copy basis, both better transfer through-
put and low downtime are achieved. However, since we
assume a migration scheme that is independent of the inter-
nal architecture of the old server, integrating the pre-copy
method will incorporate the cost of detecting updated files
in the old server, as mentioned in Section 2.1. As a result, the
downtime and total migration time could be long.

2.3 Replication Using the GNS
GNS is a virtualization layer that aggregates multiple servers
into a single namespace [1]. This layer manages the mapping
between a file in the virtualized namespace and the actual file
in a file server. This layer accepts the requests from clients
and redirects the requests to the actual file server; therefore,
the clients do not need to be aware of the file location.

X-NAS [36] and NAS Switch [34] support the file replica-
tion based on GNS. Some commercial products also provide
similar solutions [5, 8, 10]. In these systems, the virtualiza-
tion layer replicates the files in the background and redirects
the access requests to the appropriate server depending on
the progress of the replication. Clients can keep accessing
the files transparently during the replication process.
Parallel NFS (pNFS) [27] is an extension of the NFS pro-

tocol that supports out-of-band data transfer. A metadata
server provides the layout of file data that includes informa-
tion about the file location, and the clients directly send the
access requests to the target server based on the location
information. pNFS can reduce the overhead of data access;
however, the overhead of the metadata access remains.
GNS-based solutions require the old servers to operate

under the GNS management in advance. Furthermore, all the
access requests must be directed through the virtualization
layer, which increases the overhead of access redirection.

2.4 Replication Using Archive Data
DAB [17], Cumulus [33], and Panache [9] encapsulate data
and metadata into an archive file and share the file among
various file servers for replication. DAB and Cumulus aim
to create a backup and restoration point among the homo-
geneous servers. Panache shares the updated data among
the servers to cache remote servers in widely distributed
environment. Windows Server Migration Tool [20] is a fea-
ture provided by the Windows server that allows for the
migration of server roles, features, and data. It exports the
server configurations and data into a single file, and the tar-
get server imports the file to inherit the configurations and
data. These methods assume that servers can recognize the

archived file format. Therefore, they are not applicable to
perform heterogeneous file server migration.
DAB and Panache support on-demand metadata restora-

tion in a manner that is similar to that used in our tech-
nique. However, our technique obtains the metadata per file,
whereas DAB obtains the metadata per directory. Panache
supports orphan inodes to defer the replication of metadata.
However, Panache is essentially a global caching system and
does not assume that the cached data is invariant at the re-
mote site. Our technique assumes that the replicated data
and file hierarchy may be updated during migration.

2.5 Volume-Level Replication
SnapMirror [35] replicates volume data and transfers incre-
mental updates. The source server keeps accepting requests
from clients and redirects them to the target server during the
replication process. Storage vMotion [18] and ImageStream-
ing [24] provide live VMmigration with volumes. They repli-
cate the volume images in a transparent manner between
storage devices. Unfortunately, volume-level replication is
not appropriate for upgrading the file servers because the
old and new file servers may be heterogeneous.

3 DESIGN
We exploit the post-copy approach to migrate file servers.
In this approach, file servers are switched from the old to
new servers before completing the migration of all files. To
achieve this, we use three techniques: on-demand migration,
background migration, and stub-based file management. We
will explain each of them. Note that on-demand migration is
dependent on stub-based file management and background
migration is dependent on on-demand migration.

3.1 On-Demand Migration
On-demand migration is a technique to migrate the files
when they are accessed for the very first time. When a file
is accessed, the new file server copies only a part of the file
information, i.e., the part of metadata that is required to
respond to the access request. This allows the new server to
accept requests before completing the file migration and to
respond to the requests in a short time. When the file data
are accessed, the new server copies the data from the old
server. By copying the data on demand, we can significantly
reduce the downtime during file server migration.
To manage the process of on-demand migration, we ex-

ploit the concept of a stub that was used in hierarchical
storage management. A stub is an intermediate state of files
or directories. A stub file is similar to a regular file; however,
it does not contain the entire file data. Instead, a stub file
contains the location information of the file data, i.e., the
path in the old file server. When a client attempts to access

67

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa

the file data, the new file server retrieves the data from the
old server, returns the data to the client, and stores the data.
When the entire data of a file is copied, it indicates that the
migration of the file has completed successfully. Directories
also take intermediate states. A directory in that state does
not stores any child directory entries, and access to the direc-
tory invokes the retrieval of directory entries and creation
of corresponding intermediate-state inodes. Further details
of stub management are presented in Section 3.3.

3.2 Background Migration
With on-demand migration, only the files accessed from the
clients are migrated. Hence, file data that have not been ac-
cessed are never migrated. To reduce the response time on
the first access and the total migration time, we introduce
background migration that actively migrates the un-accessed
files. Background migration is based on on-demand migra-
tion. We use a crawling program that traverses the directory
tree and accesses the data of the files in the new server. By
accessing the file data, the on-demand migration mechanism
copies the file data from the old server. This process con-
sumes both the CPU and storage resources. Therefore, to
avoid the influence on the user’s file access performance, we
assume that the crawling program runs when the file server
is not busy, e.g., at midnight or during weekends.

When the total amount of file data is large, the migration
of all the files will require a long time. In this case, the crawl-
ing program may not be completed in one night or weekend.
Therefore, we will have to run the crawling program inter-
mittently. However, the clients can still access the files and
directories while the crawling program is suspended. Thus,
the directory tree may be different before and after the sus-
pension of the crawling program. To maintain consistency,
the crawling program must handle this situation.

One method to achieve this is to perform progress manage-
ment that saves the current state of the crawling. However,
maintaining consistency by saving the progress while allow-
ing the clients to update is complicated because the clients
could significantly alter the directory structure using the
delete and rename operations. To avoid the risk of migration
leakage, the crawling program restarts the directory traver-
sal from the root every time it resumes operation. The file
system has a counter that counts the number of files that
were not migrated yet. This counter is incremented when
a new stub file is created and is decremented when the file
is completely migrated. If a client deletes a stub file, the
counter is also decremented. The crawling program verifies
this counter every time it starts; if the counter is zero, it indi-
cates that the migration has completed; otherwise, it restarts
the traversal of the directory from the root directory.

inode
- inode#: 1234
- block: 0
- size: -
- mtime: -
- uid: -

Stub information
- state: dummy
- path: /dir/a.txt
- optdata: -

inode
- inode#: 1234
- block: 10
- size: 10MB
- mtime: 2017/1/1
- uid: 1001

Data
- File data
- Directory entries
Protocol-specific
metadata

inode
- inode#: 1234
- block: 2500
- size: 10MB
- mtime: 2017/1/1
- uid: 1001

(a) Dummy state (b) Partial state (c) Normal file

Data
- File data
- Directory entries
Protocol-specific
metadata

Stub information
- state: partial
- path: /dir/a.txt
- optdata: -

Figure 1: Internal structures of a file.

This approach may consume server resources to access
the same files repeatedly. Alternatively, we can always track
the changes in the directory tree and notify the crawling
program about it. However, it will incur an overhead on file
access by the clients, which will degrade the performance
during file server migration. The approach we adopted de-
picts the benefit of incurring no overhead on the client’s file
access request if the file has already been migrated.
This approach tolerates power interruption and network

failures in the migration process. The state transition of files
is one way, and the counter is incremented and decremented
only once for each file. Therefore, even if an unexpected
reboot occurs, traversing the file tree and verifying the file
statuses can restore the counter value.

3.3 Stub-Based File Management
To achieve on-demand migration, we use stub-based file
management. When the file servers are switched, the new
server creates a stub root directory, which corresponds to
the root directory of the old server. A stub file is a file whose
existence can be observed but the file data and metadata may
not be completely copied from the old server yet. When a
client accesses the stub file, the new server retrieves only the
data or metadata that are necessary to respond to the request,
reducing the response time during file server migration.

A stub file is in of the two states: either a dummy state or
partial state. Figure 1 depicts the differences between these
two states in addition to the state of a normal file. Each stub
file has an inode similar to that in a normal file. A stub file in
a dummy state (Figure 1 (a)) has an inode in which most of
the attributes would not be filled yet and which contains no
file data or additional metadata. However, in a stub file in a
partial state (Figure 1 (b)), the inode attributes are completely

68

TheQuick Migration of File Servers SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

filled, and the file data may be partially retrieved from the
old server. Additionally, the stub file may contain additional
protocol-dependent metadata such as access control lists
(ACL), alternative streams, or various time-stamps.

A file created during the process of on-demand migration
is initially in a dummy state. Then, when a client accesses the
metadata or the data of the file, the file transitions to a partial
state. We use the dummy state to reduce the response time
while performing the first access to a directory. If a directory
contains thousands of files, retrieving the metadata of all
files will require a long time because the metadata must be
retrieved one-by-one by sending requests to the old server.
However, in case of normal access to a directory, only a
part of the metadata, i.e. directory entries, are sufficient for
responding to the access request. Therefore, we initially copy
a part of the metadata and later retrieve the remaining data
and metadata when they are accessed for the first time.

To maintain the state and the relation to its corresponding
file in the old server, each stub file holds the stub informa-
tion as metadata (Figure 1 (a) and (b)). The stub information
contains a file state (“state”), the file path in the old server
(“path”), and optional data (“optdata”). The optional data are
implementation-dependent and explained in Section 4.When
all the data and metadata are completed, the stub file tran-
sitions to a normal file and the stub information is deleted
(Figure 1 (c)) . Note that a file created on the new server by a
client’s request becomes a normal file and not a stub file.
To maintain consistency between a stub file and the cor-

responding file in the old server, the file path in the stub
information is set using the stub information of the parent
directory and not the pathname of the parent directory in
the new server. For example, when a directory “/A/B” is a
stub file and when the parent directory “/A” is renamed to
“/X”, its pathname in the new server becomes “/X/B”. How-
ever, when a stub file “C” is created in the directory “B”, the
pathname in the stub information of “C” is set as “/A/B/C”
which is the effective path in the old server and not the path
“/X/B/C” in the new server.

For background migration, the file systemmust maintain a
counter that contains the number of files that have not been
migrated yet, as described in Section 3.2. If we count the
number of files in the old server by traversing the directory,
it will take a long time. Instead, the counter is initially set to
be one, which indicates the stub root directory. When a stub
directory is accessed, we retrieve the directory entry of the
corresponding directory in the old server and increment the
counter by the number of files. At this time, stub files corre-
sponding to the directory entry are created in the directory.
When a stub file is fulfilled and transitioned to a normal file,
the counter is decremented. If the counter becomes zero, it
indicates that the file migration has completed. This mecha-
nism reduces the downtime in switching file servers.

This stub-based file management does not depend on the
internal structure of the old server. It uses a standard file
access protocol only to retrieve the metadata and data. There-
fore, migration between heterogeneous servers is possible.

3.4 Migration Flow
The overall flow of file server migration is as follows. At
first the clients still access the old server. The administrator
initially installs and configures a new server. Further, the
administrator creates a special account on the old server
so that the new server can access all the files in the old
server. Subsequently, the administrator creates a dummy
root directory in the new server that corresponds to the root
directory in the old server and enables on-demand migration.
Thus, the clients can start accessing the new server.

To switch file servers, the administrator initially makes the
old file server to be read-only and then directs all the clients
to remount the file servers from the old server to the new
one. Since on-demand migration is in effect, the clients can
still access all the files using the new server. To reduce the
response time and the total migration time, the administrator
periodically runs a crawling program in the background
when the server is not busy. Typically, the crawling program
will be run during midnights or on weekends. However,
the administrator can run it more frequently to reduce the
migration time or to reduce the overhead. The access speed
of the crawling program is also a configurable parameter.
This program traverses all the directories in the new server
and retrieves all the metadata and data of every file with
on-demand migration.

When the counter in the new file server becomes zero, it
indicates that the file server migration has completed. The
administrator terminates the crawling program and shuts
down the old server. Although the on-demand migration is
not disabled, its code is never executed and the clients can
directly access files without any overhead.

4 IMPLEMENTATION
Our implementation contains three programs: a file server
program, a retriever program for on-demand migration, and
a crawling program for background migration. Additionally,
the stub management layer is located on the file system.

4.1 File Server Program
The file server program is an ordinary one. We reused the
existing file server programs even though we have slightly
modified them so that they can handle the protocol-specific
issues described in Section 4.5. The stub-based file manage-
ment is implemented in the kernel layer and is not dependent
on the file server programs. We used the nfsd subsystem of
a Linux kernel 2.6.30.1 for NFS and Samba 4.1.0 for SMB.

69

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa

4.2 Retriever Program
The retriever program is an agent that retrieves the file data
and metadata from the old server based on the requests
from the stub management layer. In our implementation, the
retriever program is a user-space application written in the
C language, which communicates with the stub management
layer in a UNIX domain socket. The stub management layer
sends a request packet that contains the pathname in the
old server and the type of request. The retriever program
converts the request into a request for the old file server and
returns the result data to the stub management layer.
The retriever program usually has to wait for a certain

period of time to obtain a reply from the server. It should also
handle multiple requests in parallel. Therefore, it maintains
a thread pool to handle requests. In addition, to avoid ineffi-
ciency by sending multiple small requests, the retriever pro-
gram retrieves the file data collectively with a specified block
size from an aligned offset. Currently, the block and align-
ment size is 10 MiB. To access the file server, the retriever
program uses the nfs client in the Linux kernel for NFS and
libsmbclient bundled with Samba for SMB. The NFS client is
configured to maximize the copy speed; the buffer size for
read and write requests is 1 MiB, and the client metadata
cache period is one week. In our architecture, the contents
of the old server never vary during migration; therefore, a
long cache expiration time does not cause any problem.

4.3 Crawling Program
The crawling program is a background process to migrate
the files proactively. In our implementation, the crawling
program is a single-threaded user-space application written
in the C language and runs per a file share. Because it con-
tains a single thread, the directory traversal is performed
sequentially. The reason for not performing this operation in
parallel is the complexity of synchronization among multiple
crawlers. As described in Section 3.2, the clients could sig-
nificantly alter the structure of the directory tree. Therefore,
parallel crawling could cause directory traversal leakage or
duplication. Parallel crawling is our future work.

4.4 Stub Manager
The stub manager is implemented in the Linux kernel virtual
file system (VFS) layer. It does not depend on a specific file
sharing protocol and supports both NFS and SMB. It also does
not depend on a specific file system and does not modify the
data structure on storage. To store the stub information, we
use the extended attributes of files. Several modern file sys-
tems support extended attributes, and we can add additional
information to the files without modifying the file systems.

The stub information currently stores one-byte state infor-
mation, a path string, and a 64-bit protocol-specific field that
is described in Section 4.5.2.
To allow on-demand retrieval of file data and metadata,

we installed a hook in the VFS layer. When a client accesses
a stub directory, the stub manager first creates stub files in a
dummy state in the directory. A stub file in the dummy state
contains an inode with all-null attributes. When a client tries
to access the metadata for the first time, the stub manager
sends a request to the retriever program for retrieving meta-
data from the old server and temporarily suspends access.
When the retriever program returns a response, the stub
manager updates the metadata of the file and returns the
metadata to the client. Access to the file data is handled in a
similar manner except that the file data may be only partially
filled using the function of sparse files.
Instead of modifying the kernel, user-space implementa-

tion is also worth considering. Common file server programs
such as NFS-Ganesha [23] and Samba [25] accept additional
plugin modules. Therefore, developing a module to com-
municate with the retriever program will achieve a similar
functionality. However, we chose to implement our scheme
in the kernel space for two reasons. The first is performance.
Since our scheme requires multiple access to file metadata
to implement stub files, user-space implementation will in-
cur the overhead of multiple system calls. The second is the
ease of supporting multiple protocols. If our scheme is imple-
mented in a NFS server, it will not work for access via SMB.
In addition, even if a server program support multiple pro-
tocols, implementing exclusive file access among multiple
access is difficult and error-prone. Moreover, since various
processes to achieve additional functionalities, such as virus
detection and data compression, will run on the file server,
direct access to the locale file system must also be supported.
The kernel-space implementation can easily support all of
local, NFS, and SMB access.

4.5 Protocol-Specific Issues
Although file migration may seem to be straightforward,
there are several protocol-specific issues. We further explain
some of the issues we support in our implementation.

4.5.1 Access control and user ID mapping. Each file shar-
ing protocol contains an individual access control scheme
and user ID space [14]. If a file server supports multiple pro-
tocols, it needs to manage the internal mapping between
the ACLs of each protocol. However, we cannot obtain the
internal mapping information of the old server from the
new server. Further, there is no standard rule to determine
the mapping [3, 11]. Fortunately, the differences between
the mapping rules are not significant and are negligible in
practice. In our current implementation, we retrieve ACLs

70

TheQuick Migration of File Servers SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

via SMB and remap the ACLs for NFS access permissions
because the SMB protocol provides more fine-grained ACLs
than NFS. Similarly, mappings between the uids / gids of NFS
and sids of SMB are internally managed in the server when
there is no directory server. Therefore, we remap the uids
/ gids to the sids using a user-defined mapping table. Note
that enterprise servers are usually operated with directory
servers and remapping IDs is rarely used in actual situations.

4.5.2 Truncate. In the stub-based file management sys-
tem, file data regions that are not retrieved yet are managed
as holes of sparse files. If a client once truncates and then
expands a stub file using the NFS truncate operation, the
newly created hole at the end of the stub file cannot be dis-
tinguished from the data regions that were not retrieved.
Therefore, the stub manager attempts to fill the hole with
the data of the old server even though it should have been
left as a hole. To distinguish a hole from a region that was
not copied, we use the “minsize” attribute from the stub in-
formation. This attribute indicates the minimum size of the
stub file in the past. The “minsize” attribute is initially set
as the file size in the old server. If a client truncates a stub
file and if its size becomes smaller than the “minsize”, the
stub manager updates the “minsize” attribute with the new
file size. If the size of the hole region is beyond this minsize,
it is considered to be a newly created hole; therefore, the
retriever program does not fill that region with the old data.

Currently, the hole punching operation is under discussion
as a feature of NFS 4.2 [12]. This operation can create a hole
anywhere in a file, which makes it difficult to distinguish the
holes from regions that were not replicated. Further investi-
gation is required to support the hole punching operation in
an accurate manner.

4.5.3 Hard link. The stub manager maintains the relation
between a stub file in the new server and the corresponding
file in the old server using a pathname. If the replication
process is not aware of the hard links, a hard link file in the
old server is replicated into multiple separate normal (not
hard link) files in the new server. To maintain the hard links,
we obtained the hard link relation information (i.e., the inode
number and link count) using the NFS protocol.
When the retriever program creates a stub file, it checks

whether the link count is more than one. If so, the retriever
program creates a provisional file under a hidden directory
whose path is uniquely generated using the inode number.
When the retriever program creates another stub file and its
link count is more than one, it checkswhether the provisional
file already exists. If it exists, the retriever program creates a
hard link to the provisional file instead of creating a new stub
file. This procedure can maintain the hard links of the old
server on the new server. The provisional file and directory
are eliminated after completing the migration.

4.5.4 Access delay. In a situation where thousands of files
exist in a directory, the access to a file may require a long
time to create many stub files in the directory. If the file
server does not respond to a request for a long time, the
client may hang up for a while or the request times out, nei-
ther of which is desirable. In NFSv3, the NFS3ERR_JUKEBOX
return code is introduced to indicate that the target file is
temporarily unavailable [4]. If a client receives this error
code, the client will wait for a while and retry later. There-
fore, if we take more than 500 ms to respond to a request,
we will return this error code. To perform this, we slightly
modify the NFS server. This configuration could extend the
downtime during file server migration. However, we assume
that this configuration is the accurate approach to handle
access delays. This issue is discussed further in Section 5.2.

4.5.5 Thumbnail. Windows Explorer attempted to create
thumbnails of files in a directory. This caused several read
requests to retrieve the file contents, which degraded the
performance of directory access if the directory contained
several stub files. To suppress this, we exploited the offline
attribute of the Windows file attributes. This attribute is
defined to indicate that the file data has been physically
moved to an offline storage, and therefore, Explorer does not
create thumbnails for the offline files. Therefore, we slightly
modified the Samba server so that it sets the offline attribute
of a file when the file is a stub file.

4.6 Limitations
Our method copies data and metadata using common file
sharing protocols to support heterogeneous file servers. The
limitation of this approach is that we cannot migrate the
states of functions or configurations that are not supported
by the common file sharing protocols. For example, some
file servers support the reduction of data by compression
and deduplication. NFS and SMB do not provide the internal
expression for such reduced data. Thus, we cannot reproduce
the states of reduced data. However, data compression and
deduplication can be achieved using a post process. A post
process allows the new file server to use arbitrary internal
data structures without depending on the old server. Another
limitation is the disk quota. It is implemented outside the
file sharing protocol. We cannot handle such configurations;
therefore, the administrator must manually reconfigure the
quota settings after file server migration. Note that these are
not significant problems in actual production environments.

5 EVALUATION
This section depicts the results of the performance exper-
iments. We evaluated the downtime, total migration time,
and overhead after migration.

71

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa

Table 1: Server and client setup

Physical Machine Virtual Machine
CPU Xeon E5-2603 x 2 vCPUs x 8
Memory 64GB 16GB
Storage NVMe SSD (x 3) LSI Logic SAS
NIC 10GbE Copper VMXNET3

OS Ubuntu Server 17.10
Windows Server 2016 Linux 2.6.30.1

VMM - VMWare ESXi 6.5

5.1 Setup
Table 1 describes the setup of the file servers and client. We
used the new server on a VM because the kernel does not
support the latest storage device. We used an Ubuntu Server
for the NFS experiments and a Windows Server for the SMB
experiments on the old server and client, respectively. We
used the NFSv3 and SMB3.0 protocols. NFSv3 is a stateless
protocol and supports only POSIX-compatible metadata. In
contrast, SMB is a stateful protocol and its semantics and
metadata are relatively rich (e.g. ACLs and DOS attributes).
Therefore, copying files via SMB requires more operations
to open files and obtain metadata compared to NFS [11].

5.2 Downtime
We measured the downtime for our file server migration.
A client mounts the old server and opens a 1 GiB test file.
After the client reads the first half of the file, it switches the
connection to the new server. We measured the durations of
the three steps; remount closes the test file, unmounts the old
server, and mounts the new server; open opens the file with
the same file path; read reads the first byte. We regarded the
total time of the three steps to be the downtime.

To open and read the test file, the directory entries in the
test file path must be retrieved, and the dummy files in each
directory must be created; therefore, the depth of the test
file and width (the number of files in each directory) affect
the downtime. We performed the experiments by varying
the depth to 1, 4, and 16 and by varying the width to 10, 100,
and 1000. We tested the following four configurations to clar-
ify the impact of our on-demand migration and performed
experiments thrice to calculate the average time.
(A) Data and metadata are post-copy with a dummy state.
(B) Data and metadata are post-copy without a dummy

state; the new server replicates all the metadata imme-
diately when a parent dummy directory is accessed.

(C) Data are post-copy and metadata are pre-copy; the
new server copies the entire directory tree in advance.

(D) Data and metadata are pre-copy; a client runs rsync
or robocopy in advance to copy all the files.

The remount time depends only on protocols. The aver-
age times for NFS and SMB are 0.162 s and 0.305 s, and the
standard deviations are 0.006 s and 0.028 s, respectively.
Figure 2 depicts the open time. Each bar presents a direc-

tory structure with a different depth and width. The results
of (A) and (B) are approximately proportional to the product
of the depth and width. For example, in case of SMB (A),
the time to open a file in the root directory with 10 files
(the “(1,10)” case) was 0.11 s, while opening a file having 16
levels with 1000 files in each directory (the “(16,1000)” case)
took 26.217 s. Accessing a file in a wide directory via NFS
took much longer; the “(16,1000)” case took ten times as long
as the “(16, 100)” case. The reason was that the file server
returned NFS3ERR_JUKEBOX to notify the client that the
retrieval program required more than 500 ms to look up a
directory because creating 1000 stub files took approximately
one second. When the Linux NFS client received this error
code, it retried after 5 s; therefore, retrieving one directory
took approximately 5.5 s. Although tuning parameters can
reduce this time, even if we do not tune it, the client still
continued to access the files without causing any errors.
Compared to (A), (B) requires additional accesses to the

old server to fill the metadata of all the files in the directo-
ries. However, (B) did not increase the open time as much.
This was because the NFS client used the READDIRPLUS
operations to look up the directory entries. The response of
READDIRPLUS already included the metadata; therefore, ad-
ditional access requests were not necessary. The SMB client
used QUERY_DIRECTORY requests to retrieve the directory
entries. Their responses contained basic metadata; however,
their responses did not contain ACLs. Thus, if several files
depicted large ACLs, the open time would increase in (B).
We confirmed that, if a file contained a large ACL, additional
access requests were sent to the server. In (C) and (D), the
open time was less than 0.05 s. This confirmed that most
of the open time in our approach was required to copy the
directory entries and create stub files. The results of the SMB
(C) were approximately slower than that of SMB (D) by 0.02
s even though both the conditions did not retrieve metadata.
This was because the Windows SMB client issued a few read
requests internally during the file open operation.
The read time depends on whether the file data was re-

trieved. The time in (A), (B), and (C) was 0.058 s in NFS and
0.217 s in SMB. In contrast, the time in (D) was 0.017 s in NFS
and 0.022 s in SMB. The on-demand data retrieval increased
by 0.031 s in NFS and 0.249 s in SMB, which were not sig-
nificant. In SMB, data retrieval caused multiple operations
due to its statefulness; therefore, the time was longer than
that of NFS. However, the times were much shorter than
that required for reading the entire 1 GiB of data. Therefore,
on-demand migration was effective to reduce the downtime.

72

TheQuick Migration of File Servers SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

SMB (A) SMB (B) SMB (C) SMB (D) NFS (A) NFS (B) NFS (C) NFS (D)
(1,10) 0.110 0.110 0.047 0.023 0.052 0.044 0.001 0.001
(4,10) 0.210 0.220 0.050 0.023 0.099 0.093 0.002 0.002
(16,10) 0.623 0.640 0.050 0.023 0.277 0.248 0.005 0.005
(1,100) 0.283 0.260 0.047 0.020 0.163 0.175 0.001 0.001
(4,100) 0.800 0.793 0.050 0.023 0.512 0.522 0.002 0.002
(16,100) 2.873 2.880 0.053 0.023 1.972 1.894 0.005 0.005
(1,1000) 1.620 1.867 0.050 0.023 5.684 5.582 0.001 0.001
(4,1000) 6.843 6.420 0.050 0.020 22.531 22.554 0.002 0.002
(16,1000) 26.217 28.123 0.050 0.023 90.075 90.098 0.005 0.005

0.000

0.001

0.010

0.100

1.000

10.000

100.000

T
im

e
to

 o
pe

n
fil

e
(s

ec
)

(d
ire

ct
or

y
de

pt
h,

w
id

th
)

Figure 2: Time required to open a file.

In total, the server migration took less than 30 s except for
the case when the files were in wide directories. However,
in normal cases, directories have at most tens of files [19];
therefore, it is a rare case.

The downtime in the pre-copy approach mostly depends
on the replication time of the last copy and not the open
time. Therefore, we evaluate the downtime of the pre-copy
approach in the succeeding section.

5.3 Total Migration Time
We evaluated the total migration time using a dataset ob-
tained from our office. In this dataset, more than 100 users
had stored files for over 10 years. The size and directory
depth distribution of the files were similar to that of previous
studies [6, 7, 19]. The file share contained 30 K directories,
484 K files, and 242 GiB of data in total. The average file size
was 500 KiB, and its distribution followed the Pareto model.
The depth of 90% of the files was less than 12, and the aver-
age depth of all the files was 8.84. These two distributions
indicated that our dataset reflected the common file server
usages. We measured the replication time using the four con-
figurations in Section 5.2. We measured the replication time
of the data and metadata of (C) separately.
Figure 3 depicts the results. The replication times of (A),

(B), and (C) were almost identical. This was reasonable be-
cause the differences were mostly in the order and timing.
(A) was a little faster than (B) and (C) because of the effects
of metadata caching in VFS. Since (A) replicated data right
after replicating the metadata, the inodes and directory en-
tries were cached. In contrast, (C) replicated the metadata in
advance and the data later. Due to heavy access of the file
data, the metadata could be evicted from the cache. There-
fore, the metadata could be accessed again, which led to a

3:24

1:10

3:30

1:10

3:34

1:18

2:21

1:41

0:00

1:00

2:00

3:00

4:00

SMB NFS

T
im

e
to

 c
om

pl
et

e
re

pl
ic

at
io

n
(h

h:
m

m
)

File sharing protocols

1:16

Time to copy metadata

0:32
(A) (B) (C) (D) (A) (B) (C) (D)

Figure 3: Total migration time.

longer total replication time. In case of (B), the retriever pro-
gram traversed the directory tree by performing a depth-first
search. Therefore, the file metadata in a shallow directory
were evicted when the program walked its large sub-tree.

The results of (D) were observed to vary with protocols.
Since the pre-copy was performed by a client, the replication
time was expected to be longer due to the network trans-
fers. In case of NFS, the replication time was slower than
that of other configurations. In contrast, in case of SMB, the
replication time was faster. This was due to the statefulness
of the SMB protocol and the behavior of the retrieval pro-
gram. In this case, the client transferred the file data in bulk.
The retriever program was designed for on-demand access;
therefore, it opened a file each time it accessed a file segment.
This behavior increased the total migration time in the SMB
protocol. We can optimize this behavior by keeping the file
handles for bulk data transfer during background migration.

In the pre-copy approach, files are repeatedly copied until
the size of the updated files become small. Therefore, the
downtime and migration time depend on the number of this
iteration and the size of the updated files. To estimate the

73

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Keiichi Matsuzawa, Mitsuo Hayasaka, and Takahiro Shinagawa

0
200
400
600
800

1,000
1,200
1,400

SMB
(6 shares)

SMB
(1 share)

NFS
(6 shares)

NFS
(1 share)

D
at

a
tr

an
sf

er
 s

pe
ed

 (M
B/

s)

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Figure 4: Data transfer speed of the client file read.

downtime, we updated a part of this dataset andmeasured the
replication time. In the NFS case, we randomly updated 43K
2.4 GiB files and replicated them using rsync. The result was
that the operation took 328 s. In case of rsync, traversing the
directory tree took more than two min because rsync checks
the update time of every file. Therefore, the downtime is at
least two min, which is longer than our post-copy approach.
In the SMB case, we randomly updated 47K 520 MiB files
and replicated them using robocopy. The result was that the
operation took 27 s. In case of robocopy, it did not access each
file; instead, it accessed the directory entries to determine the
files to be copied. However, if the clients updated more files
than that observed in this situation, the downtime becomes
longer than that in our post-copy approach.
As for the migration time, the pre-copy approach took

69% of the time required by our approach using SMB and
was already longer than our approach using NFS (Figure 3).
If clients updated any files since the last replication was
performed, it would take more time. The time was dependent
on the update frequency and amount of files. However, in
busy servers, it is likely that the total migration time will be
longer than that in our approach even in case of SMB.

5.4 Overhead After Migration
We measured the overhead of on-demand migration in the
following three situations: (a) before migration, (b) after
migration, and (c) normal case. We first prepared six file
shares filled with large files to evaluate the bulk data transfer
performance. A client sequentially reads one file per share
in parallel. We measured the transfer speed of the file read.
Figure 4 shows the results. In case of 6 shares, (b) and (c)
depicted approximately 1200 MB/s, and the 10-GbE network
bandwidth was saturated. As expected, (a) depicted lower
performance than that depicted by (b) and (c); however, (b)
and (c) depicted approximately the same performance.
To evaluate the performance in a mixed workload, we

used filebench [32] v1.5.0-alpha3.We chose the fileserver-new
workload that deployed 10,000 files, a 1.2 GiB dataset, and 50
client processes to repeatedly open, close, read, write, append,
and delete files. We measured the operations per second for

0

400

800

1,200

1,600

2,000

2,400

0 200 400 600 800 1000

O
pe

ra
tio

ns
 p

er
 s

ec
on

ds

Running time (seconds)

SMB (a) NFS (a)
SMB (b) NFS (b)
SMB (c) NFS (c)

Figure 5: Performance of the mixed workload.

20 min. This workload generated repeated accesses to the
same files; therefore, the client cache was disabled during
the course of this experiment. The current filebench does not
support the Windows platform; therefore, we used a Linux
client for both NFS and SMB.

Figure 5 depicts the results. The results of (b) and (c) were
approximately identical. (a) initially depicted a lower perfor-
mance due to the on-demand migration. However, as the files
are replicated onto the new server, the performance soon
increased to become close to the performance of (c). SMB
(a) depicted slower movement due to the statefulness of the
protocol. In the first tens of seconds, the file access produced
metadata retrieval; therefore, SMB required more operations
than that required by NFS. Still, retrieving a file generated
multiple SMB requests, and the filebench randomly accessed
the files. Thus, the performance recovery was slower than
that in NFS. Finally, the performance became almost the
same as that of (c) after the migration of all the files.

6 CONCLUSION
We proposed a quick file server migration scheme. In this
scheme, file data and metadata are migrated from the old
to new servers in the post-copy approach using two mecha-
nisms. The first is on-demand migration that retrieves the
file data and metadata only when they are accessed by the
clients for the first time. The second is background migration
that traverses the directory tree and proactively retrieves
the file data and metadata. These two mechanisms are based
on a stub-based file management that allows intermediate
states of file migration. This scheme can reduce the down-
time during file migration, reduce the migration overhead
including the total replication time and file access overhead
after migration, and support heterogeneous file servers.

In the current implementation, there is still room for opti-
mization of replication performance. This is because the total
replication time can be further reduced by the parallelized
crawling of directory trees and the bulk transfer of files.

74

TheQuick Migration of File Servers SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

REFERENCES
[1] Ted Anderson, Leo Luan, Craig Everhart, Manuel Pereira, Ronnie

Sarkar, and Jane Xu. 2004. Global namespace for files. IBM Systems
Journal 43, 4 (2004), 702–722.

[2] Alain Azagury, Michael E. Factor, Julian Satran, and William Micka.
2002. Point-in-Time Copy: Yesterday, Today and Tomorrow. In Pro-
ceedings of 19th IEEE Mass Storage Systems and Technologies. 259–270.

[3] Ellie Berriman and Binguxe Cai. 2011. NetApp Storage System Mul-
tiprotocol users guide. Technical Report 3490. NetApp. http://www.
netapp.com/us/media/tr-3490.pdf

[4] Brent Callaghan, Brian Pawlowski, and Peter Staubach. 1995. Network
File System (NFS) Version 3 Protocol Specification. Internet Requests
for Comments. (1995). https://www.rfc-editor.org/info/rfc1813

[5] Data Dynamics Inc. 2017. StorageX 8.0. (2017). Retrieved 2018-04-28
from https://www.datadynamicsinc.com/launch/

[6] John R. Douceur and William J. Bolosky. 1999. A Large-scale Study
of File-system Contents. In Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’99). ACM, New York, NY, USA, 59–70. https:
//doi.org/10.1145/301453.301480

[7] Allen B. Downey. 2001. The structural cause of file size distributions.
In Proceedings of the 9th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS
2001). 361–370.

[8] EMC Corporation. 2009. EMC Rainfinity File Management Appliance
Getting Started Guide. (2009). Retrieved 2018-04-28 from https://www.
emc.com/collateral/TechnicalDocument/docu8513.pdf

[9] Marc Eshel, Roger Haskin, Dean Hildebrand, Manoj Naik, Frank
Schmuck, and Renu Tewari. 2010. Panache: A Parallel File System
Cache for Global File Access. In Proceedings of the 8th USENIX Confer-
ence on File and Storage Technologies. 155–168.

[10] F5 Networks, Inc. 2013. ARX Series Datasheet. (2013). Retrieved
2018-04-28 from https://www.f5.com/pdf/products/arx-series-ds.pdf

[11] Steven M. French. 2007. A New Network File System is Born: Com-
parison of SMB2, CIFS, and NFS. In Proceedings of Linux Symposium,
Vol. 1. 131–140.

[12] Thomas Haynes. 2016. Network File System (NFS) Version 4 Minor
Version 2 Protocol. Internet Requests for Comments. (2016). https:
//www.rfc-editor.org/info/rfc7862

[13] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-
copy Live Migration of Virtual Machines. SIGOPS Operating System Re-
view 43, 3 (July 2009), 14–26. https://doi.org/10.1145/1618525.1618528

[14] Dave Hitz, Bridget Allison, Andrea Borr, Rob Hawley, and Mark Muh-
lestein. 1998. Merging NT and UNIX Filesystem Permissions. In Pro-
ceedings of the 2nd USENIX Windows NT Symposium. 10.

[15] Intel, Inc. 2013. Planning Guide: Updating IT Infrastruc-
ture. (2013). http://www.intel.com/content/dam/www/public/us/en/
documents/guides/server-refresh-planning-guide.pdf

[16] JM Project. 1993. Linux Programmer’s Manual: NFS. (1993). Retrieved
2018-04-28 from https://linuxjm.osdn.jp/html/util-linux/man5/nfs.5.
html

[17] Nemoto Jun, Sutoh Atsushi, and Iwasaki Masaaki. 2017. Directory-
Aware File System Backup to Object Storage for Fast On-Demand
Restore. International Journal of Smart Computing and Artificial Intel-
ligence 1, 1 (2017), 1–19.

[18] Ali Mashtizadeh, Emré Celebi, Tal Garfinkel, and Min Cai. 2011. The
Design and Evolution of Live Storage Migration in VMware ESX. In
Proceedings of the 2011 USENIX Annual Technical Conference. 1–14.

[19] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Practical
Deduplication. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies. 1–14.

[20] Microsoft. 2009. Windows Server Migration Tools and Guides.
(2009). Retrieved 2018-04-28 from https://technet.microsoft.com/en-us/
library/dd759159(v=ws.11).aspx

[21] Microsoft TechNet. 2016. Command-Line Reference Robocopy.
(2016). Retrieved 2018-04-28 from https://technet.microsoft.com/en-us/
library/cc733145(v=ws.11).aspx

[22] Edgar A. Olougouna. 2013. SMB 2.x and SMB 3.0 Time-
outs in Windows. (2013). Retrieved 2018-04-28 from
https://blogs.msdn.microsoft.com/openspecification/2013/03/
27/smb-2-x-and-smb-3-0-timeouts-in-windows/

[23] NFS-Ganesha project. 2017. NFS-Ganesha Wiki : Fsalsupport.
(2017). Retrieved 2018-04-28 from https://github.com/nfs-ganesha/
nfs-ganesha/wiki/Fsalsupport

[24] QEMUWiki. 2011. Image Streaming API. (2011). Retrieved 2018-04-28
from https://wiki.qemu.org/Features/ImageStreamingAPI

[25] Samba Team. 2017. Samba Wiki : Writing a Samba VFS Module. (2017).
Retrieved 2018-04-28 from https://wiki.samba.org/index.php/Writing_
a_Samba_VFS_Module

[26] Bianca Schroeder and Garth A. Gibson. 2007. Understanding Disk
Failure Rates: What Does an MTTF of 1,000,000 Hours Mean to You?
ACM Transactions on Storage 3, 3, Article 8 (Oct. 2007). https://doi.org/
10.1145/1288783.1288785

[27] Spencer Shepler, Mike Eisler, and David Noveck. 2010. Network File
System (NFS) Version 4 Minor Version 1 Protocol. Internet Requests
for Comments. (2010). http://www.rfc-editor.org/rfc/rfc5661.txt

[28] Andrew S. Tanenbaum. 2007. Modern Operating Systems (3rd ed.).
Prentice Hall Press.

[29] TechTarget. 2017. NAS trifecta: Price, features and performance. Stor-
age Magazine 16, 8 (2017), 14.

[30] TechTarget. 2017. Snapshot 1: New NAS buys motivated by perfor-
mance and outdated hardware. Storage Magazine 16, 2 (2017), 12.

[31] Andrew Tridgell and Paul Mackerras. 1996. The rsync algorithm. Tech-
nical Report TR-CS-96-05. ANU Research Publications.

[32] Tarasov Vasily, Zadok Erez, and Shepler Spencer. 2016. Filebench: A
Flexible Framework for File System Benchmarking. ;login: The Usenix
Magazine 41, 1 (2016), 6–12.

[33] Michael Vrable, Stefan Savage, andGeoffreyM. Voelker. 2009. Cumulus:
Filesystem Backup to the Cloud. ACM Transactions on Storage (TOS)
5, 4, Article 14 (Dec. 2009), 28 pages. https://doi.org/10.1145/1629080.
1629084

[34] Katsurashima Wataru, Yamakawa Satoshi, Torii Takashi, Ishikawa
Jun, Kikuchi Yoshihide, Yamaguti Kouji, Fujii Kazuaki, and Nakashima
Toshihiro. 2003. NAS switch: a novel CIFS server virtualization. In
Proceedings of 20th IEEE Mass Storage Systems and Technologies. 82–86.

[35] Mike Worthon. 2012. SnapMirror Configuration and Best Practices
Guide for Clustered Data ONTAP. Technical Report 4015. NetApp.
https://www.netapp.com/us/media/tr-4015.pdf

[36] Yasuda Yoshiko, Kawamoto Shinichi, Ebata Atsushi, Okitsu Jun, and
Higuchi Tatsuo. 2003. Concept and evaluation of X-NAS: a highly
scalable NAS system. In Proceedings of 20th IEEE Mass Storage Systems
and Technologies. 219–227.

75

http://www.netapp.com/us/media/tr-3490.pdf
http://www.netapp.com/us/media/tr-3490.pdf
https://www.rfc-editor.org/info/rfc1813
https://www.datadynamicsinc.com/launch/
https://doi.org/10.1145/301453.301480
https://doi.org/10.1145/301453.301480
https://www.emc.com/collateral/TechnicalDocument/docu8513.pdf
https://www.emc.com/collateral/TechnicalDocument/docu8513.pdf
https://www.f5.com/pdf/products/arx-series-ds.pdf
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7862
https://doi.org/10.1145/1618525.1618528
http://www.intel.com/content/dam/www/public/us/en/documents/guides/server-refresh-planning-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/server-refresh-planning-guide.pdf
https://linuxjm.osdn.jp/html/util-linux/man5/nfs.5.html
https://linuxjm.osdn.jp/html/util-linux/man5/nfs.5.html
https://technet.microsoft.com/en-us/library/dd759159(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/dd759159(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc733145(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc733145(v=ws.11).aspx
https://blogs.msdn.microsoft.com/openspecification/2013/03/27/smb-2-x-and-smb-3-0-timeouts-in-windows/
https://blogs.msdn.microsoft.com/openspecification/2013/03/27/smb-2-x-and-smb-3-0-timeouts-in-windows/
https://github.com/nfs-ganesha/nfs-ganesha/wiki/Fsalsupport
https://github.com/nfs-ganesha/nfs-ganesha/wiki/Fsalsupport
https://wiki.qemu.org/Features/ImageStreamingAPI
https://wiki.samba.org/index.php/Writing_a_Samba_VFS_Module
https://wiki.samba.org/index.php/Writing_a_Samba_VFS_Module
https://doi.org/10.1145/1288783.1288785
https://doi.org/10.1145/1288783.1288785
http://www.rfc-editor.org/rfc/rfc5661.txt
https://doi.org/10.1145/1629080.1629084
https://doi.org/10.1145/1629080.1629084
https://www.netapp.com/us/media/tr-4015.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pre-Copy Migration
	2.2 Post-Copy Migration
	2.3 Replication Using the GNS
	2.4 Replication Using Archive Data
	2.5 Volume-Level Replication

	3 Design
	3.1 On-Demand Migration
	3.2 Background Migration
	3.3 Stub-Based File Management
	3.4 Migration Flow

	4 Implementation
	4.1 File Server Program
	4.2 Retriever Program
	4.3 Crawling Program
	4.4 Stub Manager
	4.5 Protocol-Specific Issues
	4.6 Limitations

	5 Evaluation
	5.1 Setup
	5.2 Downtime
	5.3 Total Migration Time
	5.4 Overhead After Migration

	6 Conclusion
	References

