How to Best Share a Big Secret

Roman Shor* Gala Yadgar* Wentao Huang† Eitan Yaakobi† Jehoshua Bruck‡

*Computer Science Department, Technion, †Snap Inc., ‡California Institute of Technology
{shroman, gala, yaakobi}@cs.technion.ac.il, whuang@snapchat.com, bruck@caltech.edu

ABSTRACT
When sensitive data is stored in the cloud, the only way to ensure its secrecy is by encrypting it before it is uploaded. The emerging multi-cloud model, in which data is stored redundantly in two or more independent clouds, provides an opportunity to protect sensitive data with secret-sharing schemes. Both data-protection approaches are considered computationally expensive, but recent advances reduce their costs considerably: (1) Hardware acceleration methods promise to eliminate the computational complexity of encryption, but leave clients with the challenge of securely managing encryption keys. (2) Secure RAID, a recently proposed scheme, minimizes the computational overheads of secret sharing, but requires non-negligible storage overhead and random data generation. Each data-protection approach offers different tradeoffs and security guarantees. However, when comparing them, it is difficult to determine which approach will provide the best application-perceived performance, because previous studies were performed before their recent advances were introduced.

To bridge this gap, we present the first end-to-end comparison of state-of-the-art encryption-based and secret sharing data protection approaches. Our evaluation on a local cluster and on a multi-cloud prototype identifies the tipping point at which the bottleneck of data protection shifts from the computational overhead of encoding and random data generation to storage and network bandwidth and global availability.

1 INTRODUCTION
Cloud storage services are ubiquitous, offering high performance and availability, global-scale fault tolerance, file sharing, elasticity, and competitive pricing schemes. Outsourcing data storage and management to a cloud storage provider can be significantly less costly to an organization than maintaining a private data-center with equivalent availability and performance.

However, many businesses and individuals are reluctant to trust an external service provider with their sensitive data; while providers guarantee the durability of the data, they cannot fully guarantee confidentiality in the face of a malicious or compromised employee. Recent reports suggest that the majority of cloud service providers do not specify in their terms of service that data is owned by the customers, and lack security mechanisms to protect it [2, 52]. Furthermore, several incidents of “data leakage” from the cloud have been recently documented [22, 55, 56, 60].

As long as data is stored by one provider, the only way to ensure confidentiality is to encrypt it at the client side, before it is uploaded to the cloud, and decrypt it whenever it is downloaded. This requires generation and maintenance (either locally or remotely) of a large number of encryption keys. Key-based encryption provides computational security—it prevents attacks by requiring excessive complexity (and thus, computational power and time). However, because encryption is considered computationally expensive [66, 75], many users still upload their original data to the cloud without further protection [2].

Additional limitations hinder the wider adoption of cloud storage. One is vendor lock-in, where switching from one cloud provider to another (for various business reasons) becomes prohibitively expensive due to the cost of retrieving large amounts of data or developing new application interfaces [54]. Another is outages that a single cloud provider might suffer [34, 40].

An emerging and increasingly popular storage model addresses these limitations; data in a multi-cloud [9–11, 15, 47] (also referred to as ‘inter-cloud’, ‘cloud-of-clouds’ or ‘federated cloud’) is stored redundantly in two or more independent clouds. Such redundancy enables users to access or recover their data when one of the clouds is temporarily unavailable, goes out of business, or experiences excessive load. Alternatively, it offers the flexibility of placing more capacity or I/O load on the clouds that currently offer it for the lowest price or highest throughput.
This new model also presents an opportunity to protect data by secret sharing. A secret-sharing scheme is a special encoding which combines the user’s original data with redundant random data and ensures that the original data can only be decoded by obtaining all of the encoded pieces. These pieces must be stored on independently secured nodes, as is done in multi-clouds. Secret sharing provides information-theoretic security—even an attacker with unlimited computational power has no way of gaining any information about the data that was stored. Thus, information-theoretic security is considered stronger than computational security.

Although they do not require encryption keys, secret-sharing schemes still incur significant storage overhead and non-trivial encoding and decoding complexity, and require generating large amounts of random data. Thus, they are currently used only for long-term archiving of cold data [75], or for remotely storing small amounts of data, like encryption keys [10, 11, 15]. An alternative to explicit storage of encryption keys was proposed in AONT-RS [66]: the keys are hashed with the encrypted data and dispersed on independent storage nodes, achieving significantly higher throughput and lower storage overhead than secret sharing.

Recent technological advances eliminate two major bottlenecks of data protection. One is a new secret sharing scheme, secure RAID, that facilitates efficient decoding of partial data, and whose computational overhead is comparable to that of standard erasure coding [29, 33]. Another is hardware-accelerated encryption [23] and its adoption in common cryptographic libraries [3].

These advances present system designers with a new trade-off. Encryption provides computational security, but requires key generation and management and relies on hardware accelerators for efficient implementation. Secret sharing provides information theoretical security at low complexity but incurs significant storage overhead. Unfortunately, existing evaluation results do not indicate which approach will provide better application-perceived performance, because they are based on studies conducted prior to these advances.

Our goal is to bridge this gap by directly comparing the state of the art of both approaches. We reevaluate the inherent tradeoffs of secure remote storage and present the first comprehensive end-to-end analysis of secret-sharing and encryption-based schemes. Our evaluation addresses all stages of the data path, including random data generation, encoding and encryption overheads, and overall throughput on a local cluster and on geo-distributed remote storage. We implement two secret-sharing schemes and two encryption-based schemes, and measure their performance in a wide range of system parameters, including levels of availability and security, storage devices, and network architectures.

Our main conclusions can be summarized as follows.

1. The low throughput of true random data generation precludes information-theoretical security in real system implementations. (2) Secure RAID completely eliminates the computational bottleneck of secret sharing, and is outperformed only by hardware accelerated encryption. (3) Once storage and network bottlenecks are introduced, secret sharing is outperformed by encryption based techniques due to its additional I/O and transfer overhead. (4) Only encryption and secure-RAID provide efficient access to small random data chunks.

The rest of this paper is organized as follows. Section 2 provides background and Section 3 describes the goals of our analysis. We evaluate computational overheads in Section 4, and end-to-end performance in Section 5. We discuss additional aspects in Section 6 and survey related work in Section 7. Section 8 concludes our work.

2 DATA PROTECTION SCHEMES

Data availability. Fault tolerance in distributed storage systems is provided by replication or by erasure coding. An \((n, k, r)\) erasure code encodes \(k\) data chunks into a stripe of \(n\) chunks, such that all the data can be reconstructed from any \(n - r\) chunks. The encoded chunks are distributed across \(n\) different disks or nodes, ensuring that the data remains available even if \(r\) arbitrary nodes are unavailable. In a systematic erasure code, the original data is stored as is on \(k\) nodes and the redundant (parity) information is stored on the remaining \(n - k\) nodes. Thus, such a scheme allows direct access to data stored on a healthy node. Maximum distance separable (MDS) codes can tolerate the highest number of concurrent node failures given their storage overhead, i.e., \(r = n - k\).

The most commonly used erasure code is Reed-Solomon [65], which is both systematic and MDS. Its encoding and decoding entail matrix multiplication over a finite field, traditionally considered a computationally expensive operation. However, efficient implementations of Reed-Solomon are available [62] and used in open-source systems such as Ceph [79] and HDFS [72]. Recent studies show that its encoding and decoding overheads are negligible compared to other overheads in the system [28, 36, 45, 61]. New acceleration libraries, such as Intel’s ISA-L [14], utilize specialized processor instructions to further increase encoding and decoding throughput.

Data security. Storage systems must address many aspects of data security, including data integrity, user authentication and access control, and secure communication with clients. These aspects can be successfully guaranteed by any single distributed-storage provider and are orthogonal to our analysis. Mechanisms that address them guarantee that the data stored by users cannot be modified without their consent. However, they do not prevent unauthorized parties from accessing this data, fully or partially.
While keys can be generated using a password, these tend to get lost, which results in data loss. Securely storing encryption keys remains the responsibility of the clients. Many distributed storage systems are designed assuming that data has been encrypted at the client prior to being distributed. This limitation has recently been addressed by the introduction of encryption keys locally at the client prevents access to the data from unauthorized readers, who might also forward (leak) the data or parts of it to an unauthorized third party. Confidentiality refers to preventing eavesdroppers from inferring any information about the data. We are interested in the latter in this work.

For data distributed across n nodes, the confidentiality level is defined by z, the maximum number of eavesdropping nodes that cannot learn any information about the data, even if they collude. This formal definition inherently assumes that all nodes are independently secured. In other words, when a node is attacked, causing it to behave maliciously, this does not mean the remaining nodes are equally compromised. Thus, the n nodes must be separately managed and owned, like in the multi-cloud model.

Encryption. In symmetric-key cryptography, the data is encrypted and decrypted using a small secret encryption key. Many distributed storage systems are designed assuming that data has been encrypted at the client prior to being distributed [9, 19, 25, 35, 67]. Thus, generation and maintenance of encryption keys remains the responsibility of the keys’ clients. While keys can be generated using a password, these tend to get lost, which results in data loss. Securely storing encryption keys locally at the client prevents access to the data from different end devices, while distributing the keys on several devices introduces additional security issues [48, 58, 75].

Cryptography encryption introduces significant computational overhead to the data path. The advanced encryption standard (AES) [16] is a popular symmetric encryption algorithm, which operates on fixed-length strings (blocks) of 128 bits. AES includes implementations (ciphers) for key sizes ranging from 128 to 256. Larger encryption keys provide better security, but also incur higher computational overhead. This limitation has recently been addressed by the introduction of a specialized hardware accelerator and a processor instruction set, AES-NI [23].

Secret sharing. Secret sharing is an alternative method for ensuring data confidentiality without requiring maintenance of encryption keys. In an (n, k, r, z) threshold secret-sharing scheme, a secret of size k is split between n nodes, such that every subset of z nodes or less cannot deduce any information about the secret, and the data can be recovered if at most r nodes are unavailable [8, 41, 49, 70]. In Shamir’s generalized secret-sharing scheme\(^1\), also called ramp or packed Shamir [12], k secrets, (m_1, \ldots, m_k), over a finite field F are shared between n nodes with threshold z as follows. z random elements are chosen from F, (u_1, \ldots, u_z), referred to as keys (not to be confused with encryption keys). The secrets and the keys define a polynomial $p(x)$ of degree $z + k - 1$. Evaluating $p(x)$ over n distinct non-zero points (x_1, \ldots, x_n) yields n shares, $c_i = p(x_i)$. Thus the secret can be decoded from any $z + k$ shares, from which the polynomial is reconstructed by interpolation. z shares or less do not reveal any information about the secrets.

The polynomial is typically evaluated via multiplication by a $n \times (z + k)$ matrix, as depicted in Figure 1 (a). Thus, encoding requires $O((z + k)n)$ finite field operations per k secret bytes. Decoding is done by interpolation and incurs $O((z + k)^2)$ finite field operations per byte. Sharing a secret of b bytes requires $\frac{zb}{k}$ bytes of random data. We discuss the challenge of random data generation below. Shamir’s generalized scheme can be applied to arbitrary k, r, and z with the minimal achievable storage overhead. However, its main limitation is the need to download $n - r$ non-systematic shares upon every data access.

The added value of confidentiality on top of standard fault tolerance entails significant overhead. It has been shown that the maximal secret size, k, in an (n, k, r, z) threshold secret-sharing scheme is $n - r - z$ [32]. Thus, while the minimal storage overhead for tolerating r failures with an erasure code is $\frac{k+r}{k}$ (in MDS codes), the minimal overhead for also tolerating z eavesdropping nodes is $\frac{k+r+z}{k}$.

All-or-Nothing Transform with Reed-Solomon (AONT-RS). AONT-RS [66] was proposed in the context of independently-secure storage nodes, and is designed to avoid the high storage and computational overheads of secret sharing schemes as well as encryption key maintenance. As depicted in Figure 1 (b), it first encrypts the data with a standard symmetric cipher like AES using a random encryption key. It then computes a cryptographic hash of the encrypted data, XORs the hash value with the key, and appends the resulting

\(^1\)Shamir’s original scheme required that $k = 1$ [70].
string to the data, creating an AONT-RS package. The package is encoded with an \((n, k)\) Reed-Solomon code, and the resulting \(n\) chunks are each stored on a different node.

Clients can decrypt any of the systematic chunks as long as they store the encryption key. At the same time, owners who do not store the key locally can recover it by computing the cryptographic hash of all \(k\) systematic chunks. This procedure is followed even if the application requires less than \(k\) data chunks. An attacker can access the data only by compromising \(k\) independent nodes or guessing the encryption key.

Secure RAID. A recently proposed secret-sharing scheme follows an alternative approach for addressing the limitations of Shamir’s scheme: rather than relying on encryption, it minimizes the number of finite field operations for encoding and decoding. An \((n, k, r, z)\) secure-RAID scheme stores \(k\) secrets, \((m_1, \ldots, m_k)\), over a field \(F\). In the first step, \(z\) random keys, \((u_1, \ldots, u_z)\), are generated and encoded with an \((n - r, z)\) erasure code and stored systematically on \(z\) nodes. In the second step, the \(k\) secrets, XORed with the keys and the redundancy generated in the first step, are encoded with an \((n, n - r)\) erasure code and split between the remaining \(n - z\) nodes. The security of the scheme is ensured by its combination of erasure codes [29, 33].

Figure 1 (c) shows the encoding in a \((9,3,4,2)\) secure RAID scheme. The two keys, \((u_1, u_2)\), are encoded with a \((5,2)\) Reed-Solomon code \((RS_1)\) which generates three parities, \((p_1^u, p_2^u, p_3^u)\). These parities are XORed with the secret, \((m_1, m_2, m_3)\), and the result is encoded with a carefully chosen \((9, 5)\) Reed-Solomon code \((RS_2)\) to produce the \(n\) shares\(^2\).

Decoding is done by obtaining the keys, encoding them with \(RS_1\), and using the parities to reveal any \(m_i\) or all of them. Thus, three shares are required to decode one data share, and any five shares can reveal the entire secret. The data can be recovered from up to four node failures.

This scheme holds several desirable properties. First, its storage overhead is optimal \((k = n - r - z)\) as in the generalization of Shamir’s scheme. Second, the two encoding steps are comparable in complexity to standard erasure codes. Since the keys are stored systematically and every element of the secret is protected by exactly \(z\) keys, the number of finite field operations for encoding is \(O(zk + (z + k)r)\). We refer to this property as near-systematic encoding. Finally, a random read of a single share of the secret requires accessing only a single encoded share and \(z\) keys, and the original share can be decoded with only \(O(z)\) finite field operations. This is in contrast to accessing and decoding \(n - r\) shares in existing secret-sharing schemes (note that typically, \(n - r\) is considerably greater than \(z\)).

Random data generation. Key-based encryption and secret-sharing schemes are only as secure as their random data. In true random data, the value of one bit does not disclose any information on the value of any other bit. Thus, if the keys are not truly random, an attacker can derive some information about the encoded data.

True random data is generated by measuring a natural source of noise, such as atmospheric or thermal noise, or hardware interrupts [13, 17, 24, 26, 27]. This method produces unpredictable streams of data, but is rate-limited by the external noise source and may require special hardware. Thus, true random data generators are typically orders or magnitude slower than the data protection schemes that rely on them. In addition, most of them cannot be used safely on virtual machines that share hardware [35].

An alternative approach uses a pseudo-random number generator (PRNG). A PRNG is a deterministic algorithm that, given an initial value (seed), generates a sequence of uniformly distributed numbers. A cryptographically secure PRNG (CSPRNG) generates a random output that is computationally indistinguishable from true random data. Thus, it is considered computationally secure to use CSPRNGs to generate encryption and secret-sharing keys. CSPRNGs are typically implemented with a cryptographic function, whose seed must be generated by a true random generator.

3 CHALLENGES AND GOALS

The schemes described above have been designed with different objectives and tradeoffs between storage and computational overhead, maintenance, and level of security. At the same time, their performance depends on recently introduced acceleration methods for encryption, random data generation, or finite field operations. Thus, previous evaluation results do not provide a clear picture of how these schemes compare in terms of application-perceived read and write throughput. For example, AONT-RS has been shown to outperform Shamir’s secret sharing scheme, in a study that preceded both secure RAID and hardware-accelerated encryption [66]. Similarly, the complexity of secure RAID has been shown to be lower than that of Shamir’s scheme and encryption, but this theoretical result does not reflect the effects of hardware acceleration on each of these methods. Finally, while secret-sharing schemes rely on large amounts of random data to provide information-theoretical security, we are not aware of any evaluation that includes true random data generation.

To further complicate matters, the benefit of recent schemes and hardware improvements depends on their specific implementation and on the storage system they are applied to. The choice and combination of a random number generator, erasure code, and encryption algorithm can determine which one becomes the bottleneck. Similarly, the system bottleneck...
may be determined by the speed of the processor, the characteristics of the storage devices, the topology of the network, and the interaction between those components. Multi-cloud environments may further increase the sensitivity of any given scheme to unstable storage and network throughput.

Our goal in this study is to close this gap by mapping the end-to-end costs of the state-of-the-art in data protection schemes. To that end, we examine how application read and write throughput are affected by (1) random data generation, (2) hardware acceleration, (3) storage overhead, (4) storage type, and (5) network topology. Our results reveal a different clear winner in each context: in-memory computation, in-house LAN, and multi-cloud.

4 COMPUTATIONAL OVERHEADS

We evaluate the following data protection schemes.

- **Reed-Solomon**, which provides only fault tolerance, is our baseline.
- **Encryption**, which encrypts the data with a key-based symmetric cipher and encodes the result with Reed-Solomon for fault tolerance.
- **AONT-RS**, which hashes the encrypted data, combines the result with the encryption key, and encodes the entire package with Reed-Solomon.
- **Shamir’s** secret-sharing scheme, which combines security and fault tolerance in non-systematic encoding.
- **Secure RAID**, which combines security and fault tolerance in two encoding rounds based on Reed-Solomon.

The goal of this section is to evaluate the computational overhead of the presented schemes.

4.1 Methodology

We implemented all the data protection schemes in C++ for the computational performance evaluation and in Java for the distributed objects store described in Section 5. Whenever possible, we based our implementation on existing verified and optimized implementations of standard procedures. The implementation details of the data protection schemes are summarized in Table 1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Implementation</th>
<th>Provider</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>True RNG</td>
<td>/dev/random</td>
<td>Linux</td>
<td>Environmental noise as random source, including interrupts and RdRand</td>
</tr>
<tr>
<td></td>
<td>RdRand</td>
<td>Intel</td>
<td>Thermal noise as random source followed by cryptographic function. Considered here as True RNG due to high seeding rate.</td>
</tr>
<tr>
<td>CSPRNG</td>
<td>/dev/urandom</td>
<td>OpenSSL (C++)</td>
<td>Based on ChaCha, seeded periodically by the operating system AES 256 in counter mode</td>
</tr>
<tr>
<td>PRNG</td>
<td>rand()</td>
<td><cstdlib></td>
<td>Not secure</td>
</tr>
<tr>
<td>Hashing</td>
<td>SHA-1</td>
<td>OpenSSL (C++), Sun (Java)</td>
<td>160 bit hash</td>
</tr>
<tr>
<td>Symmetric key encryption</td>
<td></td>
<td>OpenSSL (C++), Bouncy Castle (Java)</td>
<td>Stream cipher, 128 bit keys, used in TLS [18, 42]</td>
</tr>
<tr>
<td>Erasure coding</td>
<td>Reed-Solomon (RS)</td>
<td>Jerasure (C++), Backblaze (Java)</td>
<td>Optimized using vectorization with SIMD instructions</td>
</tr>
<tr>
<td>Data dispersal</td>
<td>AONT-RS</td>
<td>Our implementation (C++/Java)</td>
<td>AES-128 + SHA-1</td>
</tr>
<tr>
<td>Secret sharing</td>
<td>Shamir’s</td>
<td>Our implementation (C++/Java)</td>
<td>Uses Jerasure for finite field operations in C++</td>
</tr>
<tr>
<td></td>
<td>Secure RAID</td>
<td>Our implementation (C++/Java)</td>
<td>Based on Reed-Solomon</td>
</tr>
</tbody>
</table>

4.2 Results

We begin our evaluation with a preliminary comparison of the basic cryptographic primitives that are used by the various data-protection schemes. We measured the encryption and decryption throughput of the ciphers, and the digest throughput of the hash functions. Our results, summarized in Table 2,
show that AES achieves a speedup of up to 5x compared to ChaCha, thanks to its hardware acceleration. We use AES-256 in the rest of our evaluation.

Random number generation. We measured the throughput of the RNGs detailed in Table 1. Our results, summarized in Table 3, show that true random data generation is too slow for any practical purpose on a general purpose machine. The AES CSVRNG is the most efficient method, outperforming even the non-secure PRNGs, thanks to its accelerated cipher.

We measured the encoding throughput of Shamir’s scheme and secure RAID with random data generated with the different methods to evaluate their overall effect on encoding performance. Figure 2 shows the results for $k = 2, 8, 32$ and $r = z = 2$. They show that the random data generation bottleneck can be eliminated if we are willing to replace information theoretical security with computational security, which can be achieved by hardware accelerated CSVRNG.

To reason about these results, we define the **random rate** as $\frac{r}{k}$, the ratio between the number of random and data bytes in a stripe. Both schemes have the same random rate. Indeed, when $k = 2$ and the random rate is 1, both schemes required 4 MB of random data per 4-MB stripe, and their performance was similar with RdRand, which was the bottleneck. The effect of random data generation decreased with the random rate as k increased. Even with a random rate of 0.0625, RdRand reduced secure RAID’s encoding throughput by 3x. Our evaluation of available random number generation techniques leads to our first conclusion, that the low throughput of true random data generation precludes information-theoretical security in real system implementations. In the rest of our evaluation, we used only AES CSVRNG.

Encode/decode. We measured encode, decode and degraded decode throughput of all the schemes. We draw three main conclusions from these results: (1) Secure RAID completely eliminates the computational bottleneck of secret sharing. (2) Hardware accelerated encryption removes the computational overhead and outperforms the other schemes. (3) The performance of AONT-RS is limited by the cryptographic hash.

Figure 3 shows encode (a) and decode (b) throughput of all schemes with $r = z = 2$ and $k = 2, 8, 32$. Reed-Solomon was omitted from the decode experiment because it does not require any decoding. For each encryption based scheme (AES, ChaCha, AONT-RS), the throughput is the same for all k. Hardware accelerated AES performed best among these schemes. The encoding throughput of AES is lower (2160 MB/s), than the AES cipher encryption throughput (3380 MB/s in Table 2) because it also includes Reed-Solomon encoding. AONT-RS had the lowest encoding and decoding throughput, about 650 MB/s. This is due to the low throughput of its hash calculation.

Interestingly, Shamir’s encoding and decoding throughput did not increase with k, despite the decreasing random rate. The reason is its non-systematic encoding—the number of operations for encoding grew quadratically with k, and became the bottleneck for $k \geq 4$. Thanks to the near-systematic encoding in secure RAID, its encoding throughput increased with k, as its random rate decreased. Its encoding throughput with $k = 8$ was 1890 MB/s, 55% higher than with $k = 2$, and only 12% lower than hardware accelerated AES. Secure RAID decode throughput is fastest at about 4200 MB/s.

Sensitivity to r and z. We repeated encode and decode measurements with different r and z combinations. The results [71] showed similar trends to encoding and decoding with $z = r = 2$, while efficient schemes were more sensitive to changes in r and z.

Reducing r from 2 to 1 increased the encoding throughput of all schemes with all k values. The increase was higher for the efficient schemes, AES and secure RAID, in which parity generation was responsible for more of the overall overhead. Reducing z from 2 to 1 reduced the random rate and increased encoding and decoding throughput of both secret-sharing schemes. Here, too, the increase was higher in secure RAID which is the more efficient scheme.

Degraded decode. We measured the degraded decode throughput of each scheme when two systematic shares are missing. For encryption based schemes, additional reconstruction overhead affected only AES, whose slowdown was about 36%. Decryption remained the bottleneck of ChaCha and AONT-RS, whose throughput was not affected by the recovery operations. Shamir’s scheme was also unaffected, but for a different reason. Due to its non-systematic encoding, every decode had to “recover” k data shares from $n - r$ shares, and the choice of shares did not affect the decoding method. The throughput of degraded decode with secure RAID was roughly half that of regular decode. The throughput increased slightly with an increase in k, as the size of the reconstructed shares decreased [71].
How to Best Share a Big Secret

SYSTOR, 2018, Haifa, Israel

Figure 3: Encoding (a) and decoding (b) throughput and random access decode latency (c) with $r = z = 2$.

Table 4: Measured throughput (MB/s) of main data protection schemes implemented in Java for $k = 8$, $r = z = 2$ and slowdown (in parentheses) compared to the C++ implementation.

<table>
<thead>
<tr>
<th></th>
<th>RS</th>
<th>AES</th>
<th>ChaCha</th>
<th>AONT-RS</th>
<th>Shamir</th>
<th>S-RAID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc</td>
<td>312.48</td>
<td>159.09</td>
<td>89.55</td>
<td>70.4</td>
<td>37.08</td>
<td>128.61</td>
</tr>
<tr>
<td>(x19)</td>
<td>(x14)</td>
<td>(x8)</td>
<td>(x9)</td>
<td>(x20)</td>
<td>(x14)</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>664.5</td>
<td>121.29</td>
<td>111.75</td>
<td>65.44</td>
<td>297.89</td>
<td></td>
</tr>
<tr>
<td>(x5)</td>
<td>(x7)</td>
<td>(x6)</td>
<td>(x15)</td>
<td>(x14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random access decode. Figure 3 (c) shows the average decoding latency of a single share in a 4 MB object for each scheme. The latency was averaged over decoding of a random chunk from each of the 512 objects. The difference between the data protection approaches is clearly evident, and demonstrates the major limitation of AONT-RS and the major advantage of secure RAID.

The encryption-based schemes had to decode only the requested share, and thus their latency decreased as k increased and the share size decreased. Their measured throughput (not shown) was comparable to that of decoding a full stripe. AONT-RS, on the other hand, had to hash all k shares to obtain the encryption key. This overhead was the bottleneck, preventing the latency from decreasing with share size.

Shamir’s scheme had to process almost the entire stripe, $k + z$ shares, to decode a single share. However, the size of its output decreased as k increased, and thus its decoding latency decreased as well. Secure RAID, on the other hand, required only $z + 1$ shares to decode a single share, and is thus faster than all the schemes, and 16–30% faster than AES.

The results of our measurements of encode and decode performance lead to our second main conclusion, that secure RAID completely eliminates the computational bottleneck of secret sharing. Secure RAID is the fastest scheme for decoding, and its encoding throughput is exceeded only by hardware accelerated encryption.

5 END-TO-END EVALUATION

In the previous section, we identified the bottlenecks of the different data protection schemes with respect to their computational overheads. Here, we wish to understand the effect of the various system-level parameters on these bottlenecks, and whether new bottlenecks are introduced. We conducted our evaluation in two different environments. The LAN setup consisted of five servers connected by a high speed network. The multi-cloud setup consisted of up to 37 virtual servers on Amazon Elastic Compute Cloud (EC2) [1], deployed in multiple geographical regions.

5.1 Methodology

We implemented a distributed object store prototype, which consists of a client that connects to a specified number of servers for transmitting and receiving data shares. We chose Java for our implementation because it provides full and efficient thread management and communication services. Thus, we re-implemented all our data protection schemes in Java.

For consistency, we compared the single threaded encoding and decoding throughput of the data schemes in Java and in C++. Table 4 shows the results for $k = 8$, $r = z = 2$, with the slowdown of the Java implementation compared to that in C++. Although the JNI modules employ optimizations such as vectorization, the achieved increase in throughput is masked by the overhead of data movement between Java and the native modules. To ensure that encoding and decoding are not the bottleneck in our LAN and multcloud setups, the client executes them using a pool of four threads. Our results show that this removes the computational bottleneck for all schemes except Shamir’s secret sharing.

Communication was handled by a separate thread for each server and used a secure protocol (TLS v1.2). At the servers, a separate thread managed I/O, to allow I/O and communication to proceed in parallel. Encoding and decoding were executed at the client, which supports one write and four read operations, as follows.

- **Write**: an object of 4MB was encoded into a stripe of n shares with one of our data protection schemes, and transmitted to n servers.
- **Object read**: $n - r$ shares were requested from their servers and decoded.
- **Degraded read**: $n - r$ shares were requested, assuming up to r servers were unavailable. The shares were decoded, possibly with a degraded decode operation.
- **Random read**: one random share was decoded from each
object. The number of servers contacted for this share depended on the data protection scheme.

- **Greedy read**: all \(n \) shares were requested from their servers, and decoding began as soon as the first \(n - r \) shares were received, possibly as a degraded decode.

We used the same number of servers, \(s \), for each \(k \). We chose \(s \) so that \(s \geq k+4 \), to ensure the \(n \) shares were distributed to \(n \) different servers. We distributed shares to servers in a round-robin fashion, so that the first chunk of object \(i \) was sent to server \(i \cdot n \pmod{s} \), and subsequent shares were sent to subsequent servers. For each parameter set and data protection scheme, we wrote a series of 4MB random objects, and then read them with the four read types. The throughput for each operation was measured in a separate experiment and run on a new JVM with clean caches.

LAN Setup. Our local cluster used five machines identical to the one described in Section 4, connected by a 10Gb Ethernet network and equipped with four Dell 960GB SATA SSDs, each. The client ran on a dedicated machine, and each of the remaining machines was used for up to ten virtual servers. Thus, in some of our configurations, some SSDs were serving up to three virtual servers. We ran all combinations of \(r = \{1, 2\} \), \(z = \{1, 2\} \), and \((k, s) = \{(2, 7), (4, 11), (8, 13), (16, 23), (32, 37)\} \). For each parameter set and data protection scheme, we wrote and read 512 objects, 2 GB in total.

Multi-cloud. We performed the same experiments in the multi-cloud setup, with 256 objects, \(r = z = 2 \) and \((k, s) = \{(2, 7), (8, 13), (16, 23), (32, 37)\} \). We ran each experiment four times and present the average and standard deviation. We used the same client machine for our multi-cloud setup. We used two instance types for our virtual servers on Amazon’s EC2 [4]: \texttt{c4.large} has two virtual CPUs, 3.75 GiB of RAM and “moderate network bandwidth”; \texttt{c4.xlarge} has four virtual CPUs, 7.5 GiB of RAM and “high network bandwidth”. We configured our servers with three storage types: General Purpose SSD is the default storage provided by Amazon Web Services (AWS), with a baseline throughput of 100 IOPS. Provisioned IOPS SSD provides 50 IOPS per 1 GB. We created volumes of 50 GB, with 2500 IOPS per volume. Throughput Optimized HDD supports up to 500 MB/s for sequential workloads. Our default setup consisted of \texttt{c4.xlarge} machines and general purpose SSDs. We compared the different storage and machine types in a separate experiment, described below.

AWS data centers are divided into regions, which correspond to distinct geographical locations and are completely independent. Within a region, isolated data centers are known as availability zones. We used separate zones to simulate independent cloud providers. We deployed EC2 instances in 14 different regions and two or three availability zones in each region: Ireland (3), Frankfurt (3), London (3), N. Virginia (3), Ohio (3), N. California (3), Oregon (3), Canada Central (2), Sao Paolo (2), Mumbai (3), Singapore (2), Seoul (2), Tokyo (2), and Sydney (2). Our client machine was located in Israel, which is connected to Europe by fiber optic cables [5].

5.2 Results

The results of our end-to-end evaluation demonstrate how the additional storage overhead of the secret-sharing schemes increases their storage and network bandwidth and limits their performance. They also reinforce the limitation of AONT-RS and Shamir’s scheme in small random accesses.

Write/read throughput. Figure 4 shows the write (a) and read (b) throughput of all schemes with \(r = z = 2 \) and \(k = \{2, 8, 16, 32\} \) in the LAN setup. The write and read throughput of Reed-Solomon, AES, and secure RAID increased with \(k \) thanks to the reduction in storage overhead and the increased I/O parallelism. Our cluster had 16 SSDs whose utilization increased until the number of servers exceeded the number of devices. Thus, the throughput was maximal with \(k = 16 \) and slightly lower with \(k = 32 \), when the overhead of the additional communication threads was considerable.

As the I/O read throughput was higher than write throughput, ChaCha and AONT-RS reached their maximal read throughput with \(k = 8 \). It did not increase further with \(k \) because of their computational overhead. The read and the write throughput of Shamir’s scheme did not increase beyond \(k = 4 \) due to its computational overhead, which was the bottleneck. In secure RAID, the high storage overhead limited its throughput with \(k \leq 4 \). However, with \(k = 16 \), the throughput of secure RAID was about 10% lower than that of AES. This
was roughly the difference between the storage overhead of those schemes.

Figure 5 shows the write (a), read (b), and greedy read (c) performance in the multi-cloud setting. The results are averaged over four executions, with error bars marking the standard deviation. The smallest multi-cloud (s = 7) was deployed in European regions only. We increased the size of the multi-cloud by deploying instances in additional regions, in order of their observed throughput. As a result, the variability in the throughput provided by different servers increased, increasing the standard deviation of our results.

The write throughput increased with \(k = 8 \) and \(k = 16 \), thanks to the increased parallelism, but then decreased with \(k = 32 \). With \(k \geq 8 \) the difference between the schemes was no longer noticeable. The read throughput decreased as the number of servers increased, due to the delays induced by high-latency network connections. Our results for the largest multi-cloud (s = 37) demonstrate a pathological case; this deployment included two servers each in the Tokyo and Singapore regions, whose observed download throughput was 1.3 Mb/sec and 100Kb/s, respectively. This caused all schemes to achieve extremely low throughput.

The greedy read optimization successfully increased the read throughput with \(s = 13 \) and \(s = 23 \), by eliminating the bottleneck of the two slowest servers in each experiment. However, the setup with \(s = 37 \) included two more slow servers, and the redundancy \((r = 2) \) was not high enough to eliminate all of them.

Random access latency. Figure 4 (c) shows the average latency of all schemes when reading one share from a stripe, with \(r = z = 2 \) and \(k = \{2, 8, 32\} \) in the LAN setup. These results reinforce the limitation of AONT-RS and Shamir’s scheme with respect to small random accesses.

The latency of Reed-Solomon, AES, ChaCha and secure RAID decreased with k, as the size of the requested share decreased. Secure RAID reads \(z + 1 = 3 \) shares, because it requires two keys to decode the data share, while the other schemes read only the data. AONT-RS must read and hash the entire object, and thus its latency was higher but decreased slightly with an increase in \(k \), thanks to higher I/O parallelism. Shamir’s scheme also reads the entire object. Thus, its latency also decreased as \(k \) increased. However, for \(k > 8 \) its latency increased with \(k \) due to the increased decoding complexity.

Storage and server type. We repeated the experiment in the small multi-cloud (s = 7) with a different combination of machine and storage type in each run.

The long-distance network bandwidth was the main bottleneck in this experiment, and thus the machine types had little to no effect on the throughput of all operations in all schemes. In contrast, the storage type did affect the throughput of the write and greedy read operations. These operations are less sensitive to the network performance than read, and thus the throughput of all schemes increased with the increase in storage bandwidth provided by the Throughput Optimized HDD, compared to SSD. The results for the Provisioned IOPS SSD, which is optimized for random access, were identical to those of the General Purpose SSD [71].

Our end-to-end evaluation, combining both the LAN and multi-cloud setups, leads to our final two conclusions. First, once storage and network bottlenecks are introduced, secret sharing is outperformed by encryption based techniques due to its additional I/O and transfer overhead. Finally, only encryption and secure RAID provide efficient access to small random data chunks.

6 DISCUSSION

Our evaluation focused on read and write throughput, which are major objectives in storage-system design. However, additional factors affect the applicability and appeal of the different data-protection approaches.

Security level. Our evaluation focused on performance and did not explicitly consider the confidentiality level of each scheme and setup. Namely, the security of secure-RAID and AONT-RS depends on \(z \) and \(k \), respectively, while that of encryption is based on its key management scheme.

Full node repair. Recovery of a failed node entails transferring data from the surviving nodes to the replacement nodes.

Figure 5: Write (a), read (b) and greedy read (c) throughput in multi-cloud setup, on c4.xlarge instances with general purpose SSD storage and \(r = z = 2 \).
node in charge of reconstructing the lost data. The replacement node necessarily gains access to more than z shares, which creates a security risk unless the data is encrypted. Several solutions to this problem entail increased storage overhead [6, 59, 68, 69, 77] which, as our results indicate, will likely reduce read and write throughput. In POTSHARDS [75], an additional random mask is transferred with every share, doubling the repair network cost. Methods for minimizing this cost and general reconstruction protocols for any z are studied in [30, 37, 63, 64].

Deduplication. Storage service providers eliminate duplicate data from their systems in order to reduce storage and network costs [20, 21, 73, 81]. Such duplicates cannot be identified when data is encoded before it is uploaded. *Convergent encryption*, in which the encryption key is generated by a cryptographic hash of the data, can successfully alleviate this problem [46, 74]. A similar solution can be applied to secret-sharing schemes [44]. Our results indicate that this will significantly reduce encoding throughput, unless both encryption and hashing are hardware accelerated.

Pricing. Cloud resource pricing depends on the location of the servers, the amount and type of storage attached to them, and the I/O and network bandwidth they use. Therefore, additional storage overhead not only limits the performance of the secret-sharing schemes, but is also more costly for the user. Furthermore, the additional cost of downloading entire stripes during random access or z additional shares in each download may rule out some of the schemes we evaluated.

Our evaluation provides some insight into the effect of several technological trends. As storage-class memory and RAM-based storage [57] gain popularity, the bottlenecks in the data path shift from storage to computation. In such architectures, the bottlenecks we identified in Section 4 may no longer be masked by high storage costs. This may increase the benefit from low computational overhead in schemes like secure RAID, although the additional data transfer they incur may remain the bottleneck. At the same time, hardware acceleration of common complex operations may be applied to additional schemes. Intel’s ISA-L acceleration library provides an interface for accelerated Reed-Solomon encoding and cryptographic hashing, which might also be leveraged for random data generation. Such improvements may affect the bottlenecks we identified in Section 4.

7 RELATED WORK

To protect data in a distributed system, several aspects of security must be combined. *Data integrity* refers to ensuring that the data is not modified by anyone other than an authorized user. This is usually obtained by adding cryptographic hashes as signatures to the data before it is stored [19, 25, 39]. Authorized users are *authenticated* by a separate interface, which also verifies user permissions using tokens, access control lists, or other schemes [9, 43, 51, 53]. Communication between the client and the provider’s servers, as well as between servers of the same provider, is secured by the network protocols they use [18, 80]. These mechanisms are orthogonal to the scheme used for securely storing the data.

Designing a reliable storage system on a set of untrusted nodes is challenging in several aspects. Early designs that targeted peer-to-peer networks, such as OceanStore [39], Pond [67], and Glacier [25], addressed access control, serialized updates, load balancing, routing, and fault tolerance. They all assume the data has been encrypted prior to being encoded with erasure code and distributed, while maintenance of encryption keys remains the responsibility of the clients. Most multi-cloud architectures follow a similar approach [7, 9, 19]. DepSky [10] and SCFS [11] incorporate encryption into their client, along with a secret-sharing scheme for securely storing the encryption keys. Our results indicate that this is approach is indeed optimal for multi-clouds.

Several studies reduce the storage overhead of secret-sharing schemes by reducing the capacity of individual shares. One approach store only the seed of the randomly generated data, and regenerates it during the decoding process [76]. Our evaluation of the multi-cloud settings indicate that the reduction in storage overhead (and thus, download bandwidth) may justify the increased computational overhead.

Considerable theoretical effort has focused on reducing the computation complexity of Shamir’s secret-sharing scheme while still making it information-theoretically secure [29, 31, 41, 49, 50, 78]. Another approach opts for computational security [38]. Our results show that due to the high cost of true random data generation, any implementation of Shamir’s and other secret-sharing schemes in a real system will only provide computational security whose strength depends on the strength of the CSPRNG.

8 CONCLUSIONS

We performed the first comprehensive comparison of encryption-based and secret-sharing schemes. We show that information-theoretical security is infeasible in real system implementations, due to the high cost of true random data generation. In terms of encoding and decoding performance, secret sharing with secure RAID is comparable to (and sometimes better than) hardware accelerated encryption.

Our end-to-end evaluation demonstrates how the bottleneck in real implementations shifts from computational complexity to storage throughput (on local storage) and network bandwidth (in cloud deployments). In these settings, encryption outperforms secret sharing thanks to its minimal storage overhead. Thus, our results suggest that encrypting the data and dispersing the keys with an efficient secret sharing scheme is optimal for multi-cloud environments.
REFERENCES

