
DLIRS: Improving Low Inter-Reference Recency Set
Cache Replacement Policy with Dynamics

Cong Li
Intel Corporation
cong.li@intel.com

ABSTRACT
As one of the state-of-the-art policies for buffer cache replace-
ment, Low Inter-Reference Recency Set (LIRS) uses Inter-
Reference Recency (IRR) to predict future access behaviors
of blocks. With a static allocation of most cache space to low
IRR blocks, it does not perform well in some LRU-friendly
workloads. Inspired by the idea of dynamic cache space par-
titioning from another state-of-the-art policy, Adaptive Re-
placement Cache (ARC), we propose a new Dynamic LIRS
(DLIRS) policy. The new policy uses a simple mechanism
to perform an approximated online estimation on how well
IRR predicts future access behaviors, and then dynamically
adapts the space allocation of low IRR blocks against high
IRR blocks. Experiments are performed on traces from the
UMass Trace Repository as well as a synthetic trace drawn
from a stack depth distribution. While sometimes LIRS out-
performs ARC with a significant margin and sometimes vice
versa, the new DLIRS policy consistently performs close to
the winner between ARC and LIRS in all the cases.

CCS CONCEPTS
• Information systems→ Storage management; • Theory
of computation → Caching and paging algorithms;

KEYWORDS
Buffer cache replacement, LIRS, ARC, dynamic cache space
allocation

1 INTRODUCTION
Caching mechanisms are widely used in a variety of systems
including, e.g., disk drives [11], file systems [9], middleware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211891

[4], databases [12], web servers [2], etc. Cache block replace-
ment is one of the most fundamental problems in computing.
Many algorithms, e.g., Least-Recently Used (LRU) [3], Least-
Frequently Used (LFU) [3], 2Q [7], LRU-K [10], etc., have
been proposed to determine the victim to be replaced given
a new block to be loaded into the cache.
Low Inter-Reference Recency Set (LIRS) [6] is one of the

state-of-the-art policies for cache replacement. It uses Inter-
Reference Recency (IRR), defined as the number of unique
blocks accessed between two consecutive accesses of a block,
to predict the likelihood of its future access. LIRS efficiently
discriminates high IRR (HIR) blocks from low IRR (LIR)
blocks and statically devotes most of the cache space to LIR
blocks. When the recent IRR is not a good access pattern
predictor, e.g., in some workloads drawn from a stack depth
distribution (SDD), LIRS would not perform well enough [8].
Adaptive Replacement Cache (ARC) [8] is another state-

of-the-art policy. It maintains two lists, the recency list for
blocks with one recent access and the frequency list for
blocks with two ormore recent accesses. The policy monitors
accesses in the two lists and dynamically partitions the cache
space within the two lists to balance access recency versus
access frequency. ARC is able to adapt to SDD workloads
by allocating most cache space to the recency list, but its
frequency list is less capable in capturing repeated accesses
with relatively long temporal distances than the fine-grain
metric of IRR in LIRS.

In both LIRS and ARC, the algorithm manipulates the cor-
responding data structure whenever there is a cache hit. The
manipulations need to be serialized, introducing a lock con-
tention problem. Clock-style approximations of LIRS and
ARC are proposed to resolve the lock contention problem
[1, 5]. Overhead of LIRS can also be reduced using an asyn-
chronous concurrency model [14].

Inspired by the idea of ARC, we propose a novel Dynamic
LIRS (DLIRS) policy. The new policy monitors accesses to
non-resident HIR blocks and accesses to HIR blocks demoted
from LIR status for an approximated online estimation on the
predictive capability of IRR. The information is then used to
guide the dynamic allocation of the cache space to LIR blocks
against HIR blocks. We perform empirical evaluation of the
policies on traces from the UMass Trace Repository along

59

https://doi.org/10.1145/3211890.3211891

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Cong Li

with a synthetic SDD trace with different cache space config-
urations. Experimental results show that while sometimes
LIRS outperforms ARC with a significant margin and some-
times vice versa, the new DLIRS policy consistently performs
close to the winner between ARC and LIRS in all the cases.
Studies on two of the cases are carried out to demonstrate
how the new policy overcomes the weaknesses of LIRS and
ARC.

2 BACKGROUND
2.1 LIRS Policy
The policy of Low Inter-Reference Recency Set (LIRS) uses
Inter-Reference Recency (IRR) as the fine-grained metric to
predict future accesses to a block. IRR of a block is defined
as the number of unique blocks accessed between two con-
secutive accesses of the block. The policy assumes that with
a lower value of its most recent IRR, a block is more likely
to be accessed in the future.
In the recommended setting in [6], LIRS devotes 99% of

its cache space to low IRR (LIR) blocks and the remaining 1%
to resident high IRR (HIR) blocks. It also uses shadow cache
entries [13] to track the meta-data of other blocks accessed
after the access of the least-recently used (LRU) LIR block
cached. We refer to those blocks as non-resident HIR blocks.
Figure 1(a) shows an example of the data structure used in
LIRS. The LIRS stack S is used to maintain the list of blocks
accessed after the access of the LRU LIR block, operating like
an LRU stack. The HIR block list Q tracks all the resident
HIR blocks. When a new block is first accessed, it goes to the
most-recently used (MRU) positions of both S and Q as an
HIR block. In Figure 1(a), when an HIR block A (no matter
whether it is resident or not) in S gets accessed, its current
IRR, d1, is lower than the future IRR of the LRU LIR block B
which will be greater than d2. As a result, block A’s status is
promoted from HIR to LIR and it goes to the MRU position
in S . Block B’s status is demoted from LIR to HIR and it goes
from S to Q . In this example, since block A’s data needs to
be fetched (due to its previous non-resident status), the data
of the last resident HIR block C in Q is evicted and block
C becomes a non-resident HIR. Since there is a constraint
that the status of the LRU block in S must be LIR, block D is
pruned. If a lot of new blocks arrive, S will be extended to
an unacceptable length. Practically the stack is given a size
limit. When the limit is exceeded, the last HIR blocks close
to S’s LRU position are removed.

It is straightforward to notice that there are a small number
of resident HIR blocks close to the MRU position of S . After
that S is interleaved with LIR blocks and non-resident HIR
blocks. If those non-resident HIR blocks relatively close to
the MRU position are accessed, it will result in cache misses
which can be captured by a basic LRU policy with the same

cache size. An example workload is a request stream drawn
from a stack depth distribution (SDD) [3]. The distribution
models the workload that blocks accessed are kept in a stack.
A block with a smaller stack depth is more likely to be ac-
cessed than blocks with larger depths. This results in the
pattern that new blocks are accessed, stay in small depths
in the stack, and get accessed again shortly. In such cases,
IRR is less capable in predicting the future access of a block,
especially when a new block is first encountered with a lack
of the IRR value.

2.2 ARC Policy
With a cache size of c , the policy of Adaptive Replacement
Cache (ARC) maintains two lists of length c , the recency list
for blocks accessed only once recently and the frequency list
for blocks accessed twice or more than twice recently. Figure
1(b) shows the data structure used in ARC. If an entry in the
recency list is accessed, it gets moved to the MRU position
of the frequency list. In each of the lists, its MRU portion (T1
or T2) is devoted to real cache entries and its LRU portion
(B1 or B2) is devoted to shadow cache entries. The sizes ofT1
andT2 are constrained to |T1 | + |T2 | = c and their target sizes
are dynamically adjusted to balance recency with frequency.
When a shadow entry in B1 gets accessed, it indicates that if
T1 is grown by one entry, the access will likely become a hit
with probability 1

|B1 | . Similarly, when a shadow entry in B2
gets accessed, it indicates that if T2 is grown by one entry,
the access will likely become a hit with probability 1

|B2 | . As
a result, when an entry in B1 gets accessed, we compare
1
|B1 | with

1
|B2 | and grow the target size of T1 by min{1, |B2 |

|B1 | }.
When an entry in B2 gets accessed, we compare 1

|B2 | with
1
|B1 | and grow the target size of T2 by min{1, |B1 |

|B2 | }.
ARC learns the dynamic balance between recency and

frequency. However, its frequency list contains less granular
information to capture repeated accesses with relatively long
temporal distances without a fine-grained metric like IRR.

2.3 A Glance at Comparing LIRS with ARC
We evaluate the hit ratios of LIRS and ARC using traces from
the UMass Trace Repository along with a synthetic SDD
trace. Different cache sizes are tried. The maximum number
of shadow cache entries used by LIRS is configured to be
the same as that in ARC. While the complete description is
located in Section 4, Table 1 gives a quick glance at the cases
where one algorithm outperforms the other with a relative
hit ratio improvement of at least 10%. As we see from the
results, neither LIRS nor ARC is the consistent winner. Each
of them enjoys its strength in some cases and suffers from
its weakness in some other cases.

60

DLIRS: Improving Low Inter-Reference Recency Set Cache Replacement Policy with DynamicsSYSTOR ’18, June 4–7, 2018, HAIFA, Israel

(a) (b) (c)

Figure 1: Data structure of (a) LIRS (the next access on block A); (b) ARC; and (c) DLIRS (the next access on either
block A or block B leading to dynamics in cache space partitioning).

Table 1: LIRS vs. ARC on selected configurations.

Trace (cache size) LIRS ARC
Websearch1 (131072) 13.08% 8.37%
Websearch1 (262144) 24.83% 15.03%
Websearch1 (524288) 41.01% 33.02%
Websearch2 (524288) 46.57% 40.58%
Websearch3 (524288) 46.55% 40.36%
Financial1 (512) 15.83% 23.34%
Financial1 (1024) 19.36% 26.06%
Financial1 (2048) 25.45% 29.39%
SDD (256) 17.21% 20.52%
SDD (512) 31.57% 36.91%

3 IMPROVING LIRS WITH DYNAMICS
As the performance of LIRS under LRU-friendly workloads
is impacted by the non-resident HIR blocks relatively close
to the MRU position of the LIRS stack, it is natural to allocate
more cache space to HIR blocks so that those non-resident
blocks become resident. However, this is at the cost of reduc-
ing the number of LIR block entries, limiting the length of
the LIRS stack, and therefore reducing the number of non-
resident HIR blocks tracked, which at last deteriorates the
capability in capturing repeated accesses with long temporal
distances in other workloads. For example, when allocating
30% of the cache space to HIR blocks, the performance of
LIRS on the configuration of ’Financial1 (1024)’ would im-
prove from 19.36% to 25.89%, but that on the configuration of
’WebSearch1 (131072)’ would degrade from 13.08% to 10.68%.
Inspired by the idea of ARC, we propose Dynamic LIRS
(DLIRS), a new policy which dynamically allocates cache
space to LIR blocks against HIR blocks in order to adapt to
different types of workloads.
Figure 1(c) shows the data structure used in DLIRS. For

each resident HIR block, we use an additional bit to track
whether the block is demoted from LIR status. In the figure,
if a non-resident HIR block A is accessed, it indicates that

its IRR is less capable in predicting the access. Extending
the cache space for resident HIR blocks may cover the cache
miss. If a demoted block B is hit, it indicates a previous
inappropriate demotion due to a smaller size allocated to LIR
blocks. Extending the cache space for LIR blocks may keep
the block in the LIRS stack.
Figure 2 shows the algorithm of DLIRS. Let L̃ denote the

target number of LIR blocks and H̃r the target number of
resident HIR blocks. The initialization of L̃ and H̃r follows
the default setting of LIRS [6]. Let L and Hr denote the cur-
rent number of LIR blocks and that of resident HIR blocks
respectively. We introduce two new variables, Hn to track
the current number of non-resident HIR blocks and Hd to
track the current number of resident HIR blocks demoted
from LIR status. Given the cache size of c and the same num-
ber of shadow entries, we have L̃ + H̃r = c , L +Hr ≤ c , and
L + Hr + Hn ≤ 2c . If a non-resident HIR block is accessed,
increasing the number of resident HIR blocks by one is likely
to make the access a hit with probability 1

Hn
. If a demoted

resident HIR block is hit, increasing the number of LIR blocks
by one is likely to keep the block in its LIR status with prob-
ability 1

Hd
. In either case we compare the probability with

its adversary and determine the actual size to grow, which
is similar to ARC. Whenever possible, e.g., during LIR block
demotion or resident HIR block data ejection, we bring the
current number of LIR blocks and that of resident HIR blocks
back to their target numbers.

Overhead: Comparing with the standard LIRS policy, the
new DLIRS policy introduces two new variables and attaches
a bit to each of the resident HIR blocks. The space overhead
is minimum. The algorithm of DLIRS closely follows the
workflow of LIRS. However, the new policy dynamically ad-
justs the target number of LIR blocks and that of resident
HIR blocks. Additional operations are performed in order to
bring the current number of the LIR blocks and the current
number of the resident HIR blocks back to their target num-
bers (that is, the subroutine in Figure 2). During dynamic

61

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Cong Li

Data structure
S : LIRS stack
Q : resident HIR block list

Variables
L̃: target number of LIR blocks
H̃r : target number of resident HIR blocks
L: current number of LIR blocks
Hr : current number of resident HIR blocks
Hn : current number of non-resident HIR blocks
Hd : current number of resident HIR blocks demoted from LIR status

Input a request block x
Case 1: x is an LIR block
Move x to the MRU position of S
If x is the previous LRU block of S , prune LRU HIR blocks in S , and
update Hn

Case 2: x is a non-resident HIR block in S
H̃r ← max{c − 1, H̃r +min{1, HdHn }}, L̃ ← c − H̃r
Hn ← Hn − 1, L ← L + 1
Call BringCurrentBackToTarget
Promote x ’s status to LIR, fetch the data, and move it to the MRU
position of S

Case 3: x is a resident HIR block in both S and Q
Hr ← Hr − 1, L ← L + 1
Call BringCurrentBackToTarget
Promote x ’s status to LIR, remove it from Q , and move it to the
MRU position of S

Case 4: x is a resident HIR block in Q , but not in S
If x is a demoted block, L̃ ← max{c − 1, L̃ +min{1, HnHd }}, H̃r ←
c − L̃, Hd ← Hd − 1, and clear x ’s demotion bit

Move x to the MRU position of S and Q
Case 5: x is a new block
If Hr = 0 & L < L̃, L ← L + 1 and set x to LIR status; otherwise
set x to HIR status, Hr ← Hr + 1, put x in the MRU position of
Q , and call BringCurrentBackToTarget

Fetch the data and put x in the MRU position of S
If L +Hr +Hn > 2c , remove L +Hr +Hn − 2c non-resident HIR
blocks close to the LRU position of S and update Hn

Subroutine BringCurrentBackToTarget
If L > L̃, demote L − L̃ LRU LIR blocks to HIR status, move them
from S to the MRU position of Q , prune LRU HIR blocks in S , and
update L, Hr , Hn , and Hd

If Hr > H̃r , eject the data of Hr − H̃r LRU resident HIR block in Q ,
and update Hr as well as Hd if applicable

Figure 2: Algorithm of DLIRS.

adjustment, the change of L̃ or H̃r in number of blocks is
minor. The operations in memory are fast. Therefore the
overall overhead in execution time is also minimum. Similar
to LIRS, DLIRS does not address the lock contention problem.

4 EXPERIMENTS
To evaluate the performance of the policies in terms of cache
hit ratio, we use the storage I/O traces from the UMass Trace
Repository1 which are composed of 3 search engine traces
and 2 financial online transaction processing traces.

1http://traces.cs.umass.edu/index.php/Storage/Storage.

Table 2: Traces and configurations.

Trace Requests Unique Cache size
blocks Min. Max.

WebSearch1 3996451 1310273 2048 524288
WebSearch2 17253075 1693344 2048 524288
WebSearch3 16407703 1689882 2048 524288
Financial1 5561703 827801 512 131072
Financial2 13882742 827801 512 131072
SDD 1048576 7578 256 2048

Table 3:Hit ratios of LIRS, ARC, andDLIRS on selected
configurations.

Trace (cache size) LIRS ARC DLIRS
WebSearch1 (131072) 13.08% 8.37% 13.02%
WebSearch1 (262144) 24.83% 15.03% 24.84%
WebSearch1 (524288) 41.01% 33.02% 41.01%
WebSearch2 (524288) 46.57% 40.58% 46.57%
WebSearch3 (524288) 46.55% 40.36% 46.55%
Financial1 (512) 15.83% 23.34% 23.20%
Financial1 (1024) 19.36% 26.06% 25.96%
Financial1 (2048) 25.45% 29.39% 29.23%
SDD (256) 17.21% 20.52% 20.37%
SDD (512) 31.57% 36.91% 36.35%

To further evaluate how LIRS performs in LRU-friendly
workloads, we create a synthetic SDD trace as follows. A
stack is maintained to keep the blocks accessed recently. Each
time a random stack depth is generated according to the cu-
mulative distribution function of P(N ≤ n) = 1−e−λn where
λ is set to ln 2

768 .
2 If the depth falls out of the current depth of

the stack, a new random block is requested and brought into
the stack. Otherwise the block in the corresponding depth
of the stack is requested.

Table 2 shows the characteristics of the traces as well as the
different cache sizes used for evaluation.3 We fix the number
of shadow cache entries to be the same as the number of
cache blocks.4
Table 3 highlights the performance of the policies on a

selected set of configurations in which a significant perfor-
mance difference is observed. Given a large cache size on
the 3 search traces, LIRS outperforms ARC with a relative
margin of at least 10%. Given a small cache size on the first
financial trace and the synthetic SDD trace, ARC outper-
forms LIRS with a relative margin of at least 10%. In all the
2It makes a 50% hit ratio with an LRU policy of a cache size of 768.
3The maximum cache size for the 3 web search traces follows the setting in
[8]. Note that in [8] LIRS has not been evaluated on the 3 traces.
4Refer to https://www.dropbox.com/s/5y1czqzioqx7wxs/Cache.zip (ZIP
password: DLIRS2018!) for the code and the datasets.

62

DLIRS: Improving Low Inter-Reference Recency Set Cache Replacement Policy with DynamicsSYSTOR ’18, June 4–7, 2018, HAIFA, Israel

(a) (b) (c)

Figure 3: Hit count histogram (a) with respect to IRR ranges on ’WebSearch1 (131072)’; (b) with respect to IRR
ranges on ’Financial1 (1024)’; and (c) with respect to whether the previous IRR range of a hit is quite different
from its current IRR range on ’Financial1 (1024)’.

10 cases highlighted, DLIRS performs close to the winner.
DLIRS significantly outperforms ARC in the 5 configurations
of the search traces. Meanwhile, it significantly improves
LIRS in the 3 configurations of the first financial trace and
the 2 configurations of the synthetic SDD trace.
In all the other cases not listed in the table, the perfor-

mance of DLIRS is also consistent, following closely to that
of the winner between ARC and LIRS in the individual case.
The complete experimental results are plotted in Appendix,
in which the performance of LRU is also given as the most
basic baseline.
To empirically evaluate the execution time overhead, we

examine the change in L̃ or H̃r during dynamic allocation of
the cache space to LIR blocks against HIR blocks. As analyzed
in Section 3, the change in number of blocks is the most
significant contributor to the overhead in execution time.
Throughout all the configurations, the average change in
number of blocks ranges from 1.42 to 2.00, providing the
empirical justification that the execution time overhead is
minimum.

Case Study 1: For the configuration of ’WebSearch1
(131072)’, we analyze each of the cache hits by the policies
and extract the range of the IRR value of that hit. It is done by
concatenating 10 LRU stacks and examining which stack the
hit is located in. Figure 3(a) shows the hit count histogram
with respect to different IRR ranges. As we see from the
figure, LIRS generates more hits in high IRR ranges than
ARC does. This indicates that IRR is the fine-grained metric
capable of capturing repeated accesses with relatively long
temporal distances. ARC is less capable in capturing such
access patterns. DLIRS performs close to LIRS in terms of
large hit counts in high IRR ranges. Over the run, the aver-
age space allocated to LIR blocks in DLIRS stablizes at 98.4%
(versus the static setting of 99% in LIRS), demonstrating that
it maintains the strength of LIRS in capturing those access
patterns.

Case Study 2: Figure 3(b) displays the hit count histogram
with respect to different IRR ranges for the configuration of
’Financial1 (1024)’. Most hits are concentrated on the lowest
IRR range in which LIRS generates much less hits than ARC
does. Figure 3(c) gives the insight by examining the current
IRR range versus the previous IRR range for each of the
hits. We categorize the hits into two categories. The first
one is that the two ranges are close. The second category is
that either the two ranges have a range difference greater
than 2 or the previous IRR value even does not exists (that
is, the hit is the first hit on the second access of the block).
LIRS generates much less hits when either the previous IRR
value is not a good predictor of the current IRR value or
the previous IRR value does not exist. In this case, DLIRS
performs close to ARC. Over the run, the average space
allocated to LIR blocks in DLIRS drops to 66.2% (from the
static setting of 99% in LIRS). It demonstrates that given a
low predictive capability of IRR, DLIRS adapts to an LRU-
style cache replacement with more cache space devoted to
resident HIR blocks.

5 CONCLUSION
In this paper we have proposed a novel improvement to the
LIRS cache replacement policy. The new DLIRS policy bor-
rows the idea from ARC and dynamically allocates the cache
space to LIR blocks against HIR blocks. Experimental results
indicate that DLIRS overcomes the weaknesses of ARC and
LIRS, and performs consistently close to the winner between
the two state-of-the-art policies in different configurations.

ACKNOWLEDGEMENTS
We thank Jia Bao and Honesty C. Young for many useful
discussions regarding the algorithms in this paper. We ac-
knowledge the anonymous reviewers and our shepherd, Fred
Douglis, for their valuable comments and criticisms to im-
prove the paper.

63

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Cong Li

(a) (b) (c)

(d) (e) (f)

Figure 4: Complete experimental results on the traces of (a) WebSearch1; (b) WebSearch2; (c) WebSearch3; (d)
Financial1; (e) Financial2; and (f) synthetic SDD trace.

APPENDIX: COMPLETE RESULTS
Figure 4 shows the complete experimental results of LRU,
ARC, LIRS, and DLIRS on the 6 traces. DLIRS consistently
performs close to the winner of the other policies in all the
cases.

REFERENCES
[1] Sorav Bansal and Dharmendra S. Modha. 2004. CAR: Clock with

Adaptive Replacement. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies (FAST ’04). 187–200.

[2] Pei Cao and Sandy Irani. 1997. Cost-aware WWW Proxy Caching
Algorithms. In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems on USENIX Symposium on Internet Technologies
and Systems (USITS’97). 193–206.

[3] Jr. Edward G. Coffman and Peter J. Denning. 1973. Operating Systems
Theory. Prentice Hall Professional Technical Reference.

[4] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and Isabelle Rouvellou.
2000. A Middleware SystemWhich Intelligently Caches Query Results.
In Middleware (Lecture Notes in Computer Science), Vol. 1795. 24–44.

[5] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An
Effective Improvement of the CLOCK Replacement. In Proceedings of
the 2005 USENIX Annual Technical Conference (ATEC ’05). 323–336.

[6] Song Jiang and Xiaodong Zhang. 2002. LIRS: An Efficient Low Inter-
Reference Recency Set Replacement Policy to Improve Buffer Cache
Performance. In Proceedings of the 2002 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’02). 31–42.

[7] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead
High Performance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB ’94). 439–450.

[8] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In Proceedings of the FAST
’03 Conference on File and Storage Technologies (FAST ’03).

[9] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. 1988.
Caching in the Sprite Network File System. ACM Trans. Comput. Syst.
6, 1 (Feb. 1988), 134–154.

[10] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993.
The LRU-K Page Replacement Algorithm for Database Disk Buffering.
In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’93). 297–306.

[11] Alan J. Smith. 1985. Disk Cache - Miss Ratio Analysis and Design
Considerations. ACM Trans. Comput. Syst. 3, 3 (Aug. 1985), 161–203.

[12] James Z. Teng and Robert A. Gumaer. 1984. Managing IBM Database
2 Buffers to Maximize Performance. IBM Systems Journal 23, 2 (1984),
211–218.

[13] Theodore M. Wong and John Wilkes. 2002. My Cache or Yours?
Making Storage More Exclusive. In Proceedings of the General Track of
the Annual Conference on USENIX Annual Technical Conference (ATEC
’02). 161–175.

[14] Yongrui Xu and Yongguo Han. 2011. ALIRS: A High Scalability and
High Cache Hit Ratio Replacement Algorithm. In 2011 International
Conference on Computational and Information Sciences (ICCIS ’11). 66–
70.

64

	Abstract
	1 Introduction
	2 Background
	2.1 LIRS Policy
	2.2 ARC Policy
	2.3 A Glance at Comparing LIRS with ARC

	3 Improving LIRS with Dynamics
	4 Experiments
	5 Conclusion
	References

