
REGISTOR: A Platform for Unstructured Data
Processing Inside SSD Storage

Shuyi Pei, Jing Yang and Qing Yang
Dept. of Electrical, Computer, and Biomedical Engineering, University of Rhode Island

Kingston, RI, USA 02881
Shenzhen DAPU Microelectronics Co., Ltd

Shenzhen, China
{spei,jyang,qyang}@ele.uri.edu

ABSTRACT
This paper presents REGISTOR, a platform for regular
expression grabbing inside storage. The main idea of
Registor is accelerating regular expression (regex) search
inside storage where large data set is stored, eliminating
the I/O bottleneck problem. A special hardware engine
for regex search is designed and augmented inside flash
SSD that processes data on-the-fly during data transmis-
sion from NAND flash to host. In order to make the speed
of regex search match the internal bus speed of modern
SSD, a deep pipeline structure is designed in Registor
hardware consisting of file semantics extractor, match-
ing candidates finder, regex matching units (REMUs)
and results organizer. Furthermore, each stage of the
pipeline makes use of maximal parallelism possible. To
make Registor readily usable by high level applications,
we have developed a set of APIs and libraries in Linux
allowing Registor to process files in SSD by recombining
separate data blocks into files efficiently. A working pro-
totype of Registor has been built in our newly designed
NVMe-SSD. Extensive experiments and analyses have
been carried out to show that Registor achieves high
throughput, reduces I/O bandwidth requirement by up
to 97% and CPU utilization by as much as 82% for regex
search in large data sets.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211900

CCS CONCEPTS
• Hardware → External storage; • Computer sys-
tems organization → Special purpose systems;

KEYWORDS
Regular expressions, processing in storage, near data
processing, SSD storage, hardware accelerator

1 INTRODUCTION
Staggering growth of big data has generated numerous
challenges to both research community and IT industry
in terms of data processing. The most critical one is
how to understand and extract meaningful information
out of this huge amount of data of which nearly 80%
is unstructured data [15, 16, 18, 24]. Obtaining useful
information within unstructured data not only requires
searching simple strings but also needs to apply com-
plex patterns to obtain a deeper insight. Among many
different methods, regex search provides a powerful and
flexible approach for unstructured data analysis [2]. How-
ever, regex search in a file is compute-intensive since it
requires a full scan of the file and multiple state transi-
tions to locate a complete match. Traditional software
solutions such as grep and awk for regex search cannot
keep pace with the rapid growth of data volume and the
speed of hardware that offers tens of gigabyte data rate.
Due to the importance of speeding up regex search,

extensive research has been reported in the literature
over the past decade in accelerating regex search. Some
researchers exploit SIMD hardware available in many
modern processors [11, 29, 39], multi-core architectures
[35], and GPU widely used for parallel computing[28, 56].
Recent work [15] proposed Unified Automata Processor
(UAP) that can be integrated with traditional CPU
architectures and supports various automata models.
Another line of research provides FPGA or ASIC based
solutions [20, 22, 30, 50]. Micron’s automata processor
(AP) implements NFA and uses bit-vectors and routing
matrix to perform state transitions, with one AP chip

13

https://doi.org/10.1145/3211890.3211900

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

achieving 1Gps line rate [13, 44]. Helios regex processor
from Titan IC, commercially used for network intrusion
detections, can deliver throughput up to 10Gbps based
on FPGA acceleration [22]. IBM PowerEN integrates a
regex engine (RegX) that splits regex into sub-patterns
and processes in parallel, achieving scanning rates of 20-
40 Gbps [30, 50]. HARE’s ASIC RTL implementation,
taking advantage of bit-split automata [45], can process
data at a rate of 32GB/s that matches the modern
memory bandwidth [20].

While existing research efforts successfully accelerate
regex search to match the speed of DRAM, the main bot-
tleneck of I/O bus has not been given enough attention
in the research community. Terabytes of unstructured
data are stored in data storage, such as high-speed flash
memory SSDs, as exemplified by e-commerce [5], social
computing[52] and bioinformatics [40]. All existing ac-
celerator techniques require loading this huge amount of
data from data storage, such as AWS S3 storage service
[6], to the system DRAM before any analysis can be
done. Moving such large data from storage to system
DRAM places a great burden to the storage I/O bus. The
typical high speed I/O bus in use today such as PCIe 3.0
only provides 3.94 GB/s with 4 channels and 7.88GB/s
with 8 channels [36]. Even the next-generation PCIe 4.0
is expected to offer only 7.88GB/s with 4 channels and
15.75GB/s with 8 channels [37]. On the contrary, modern
flash technologies exhibit great potential in matching
the speed of high performance computing. Flash SSD
controllers are able to support 32 independent flash chan-
nels [32], each of which runs at 667MT/s (megatransfers
per second) [32]. The aggregated throughput of flash
memories at the back end of modern SSDs reaches 32G-
B/s with the channel width of 16 bits [31]. Therefore, we
have high speed DRAM on one side and high throughput
flash memory SSD on the other, making the storage I/O
bus the clear system bottleneck.

In order to truly speed up regex search and eliminate
the system bottleneck, we propose a new approach to
accelerating regex search, referred to Registor (Regular
Expression Grabbing Inside SSD STORage). Registor
brings computation to storage to avoid unnecessary data
movement, and thus eliminates the I/O bottleneck when
processing sizable data stored in storage. We develop
Registor hardware to perform on-the-fly regex search in
storage, targeting the speed of internal bus. The idea is
to find matching candidates and then examine them in
parallel. Also, Registor hardware is able to obtain file
semantics from out-of-order data blocks and responds
to host’s request by sending the data that match the
regex exactly, associated with line number, displacement,
length and so forth.

In order for the search engine of Registor to work
for any applications running on the host, we develop
a user library which includes APIs that can be called
by user applications, a compiler which translates regex
to the formats that are understandable by hardware,
and an exception handler that improves robustness. The
compiler is optimized for Registor hardware to make the
search process more efficient. The data path for Registor
hardware bypasses the long I/O stack of operating system
(OS) to achieve low latency.

To assess the potential benefits of our proposed Reg-
istor and demonstrate its performance, we have imple-
mented Registor augmented to our newly developed
NVMe-SSD, which includes both the hardware accelera-
tor in FPGA and the user library running on Linux host
computer. Extensive experiments show that Registor
reduces I/O bandwidth requirement by up to 97% and
CPU utilization by as much as 82%, eliminating I/O bot-
tlenecks and providing high-performance regex search.
In summary, our main contributions are as follows.

∙ A hardware search engine has been designed for
on-the-fly regex search in SSD. The search engine
is fully pipelined consisting of a file semantics ex-
tractor, matching candidates finder, regex match-
ing units, and results organizer. Each stage of the
pipeline leverages parallel architecture to achieve
high throughput.

∙ A user library has been developed that enables us-
er applications to fully take advantage of Registor
hardware. We also optimize the compiling process
for the search engine and improve robustness by
syntax checking and exception handling. The data
transfer path from search engine to applications by-
passes the long I/O stack in host system providing
low-latency.

∙ A working prototype of Registor has been built
and integrated in our newly developed NVMe-SSD,
including a search engine in FPGA and a user
library running on Linux host computer. The SSD
with Registor can be treated as a regular block
level SSD storage with regex search functions. It
is readily usable by applications with no need to
modify operating system.

The rest of this paper is organized as follows. In sec-
tion 2, we present the overall architecture of Registor
followed by detailed hardware design. Section 3 discuss-
es the design of Registor’s software including a user
library and the data path. Section 4 describes the im-
plementation of Registor and the experimental setup for
evaluation purpose. The results are discussed in Section

14

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

5 to demonstrate the advantage of Registor over state-of-
the-art solutions. Section 6 discusses related work and
Section 7 concludes the paper.

2 REGISTOR HARDWARE
Consider a system shown in Figure 1. Registor sits be-
tween host applications and SSD device. It consists of
two major parts: hardware search engine and user library.
In this section, we focus on the architecture of hardware
search engine including each functional module and inter-
actions among different modules, and discuss how each
module contributes to a high-performance regex engine
in SSD storage. The user library will be discussed in the
next section.

Figure 1: Overview of the system showing where
Registor sits

2.1 Overview
To achieve high-performance regex search inside SSD
storage, we aim to make Registor capable of performing
on-the-fly search while data stream is being transferred
from flash memory to the host. In this way, the in-storage
processing time is completely hidden and transparent
to users. However, it is challenging for such engine to
match the speed of data transfer in SSD since the traver-
sal of regex consumes multiple clock cycles. Moreover,
the out-of-order data stream makes it difficult to handle
file semantics in regex search. To tackle these challenges,
we have designed four hardware modules, file semantics
extractor, matching candidates finder, regex matching
units (REMUs), and results organizer, fully exploiting
parallelism and pipelining for maximal performance. Fig-
ure 2 shows the pipeline structure of Registor hardware.
The file semantics extractor recovers file semantics from
out-of-order data blocks retrieved from NAND flash and
provides data stream in file order to the matching can-
didates finder. The matching candidates finder locates
possible matches through a fast scan of the data stream
and associates contextual information with these match-
es to form tasks. Then, REMUs process these tasks to

determine exact matches from these matching candi-
dates by performing regex search. Cyclic data buffers
(CDBs) are deployed to provide data streams for REMUs
(See Section 2.4 for details). Since these REMUs work
in parallel to gain speedup, results organizer reorders
the intermediate results from REMUs before sending to
host.

Figure 2: Registor’s hardware pipeline

2.2 File Semantics Extractor
Files are stored in separate data blocks in SSD and re-
trieved from NAND flash regardless of ordering/sequence
in order to maximize backend bandwidth. However, the
regex matching process requires not only intra-block
semantics but also inter-block semantics. The inter-
block semantics are necessary for matching regex across
block boundaries as well as providing in-file locations of
matched strings.
Retrieving File Layout: In SSD, the file-block map-
ping is stored in inodes. The data in inodes have different
formats in different on-disk-file systems. To retrieve such
information, we first read the supper block from SSD
to get the type of file system and determine the right
format. Then, we find the inode for the file by traversing
the inodes in file path, and obtain the entire file layout
by parsing the inode.
Reordering Blocks: Retrieving data blocks from
NAND flash follows a first-ready-first-serve principle,
which passes whatever is ready to the frontend interface
regardless of sequence. To recombine data blocks in order
to conforming file format, we design a reordering buffer
(RoB) for block reordering. The RoB is a random ac-
cess buffer with capacity of 𝑘 blocks. The incoming data
blocks are buffered in RoB based on their logic block
numbers (LBNs). Blocks in the RoB are sent to the next
stage of the pipeline in ascending order of their LBNs
although they may enter the RoB out of order. The input
(write) and output (read) happens asynchronously for
maximal performance. Since the file size can be larger
then buffer size, we use a pointer indicating the logical
start of RoB and turn it into a cyclic buffer. The RoB

15

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

can be logically viewed as a sliding window of size 𝑘 over
the file being searched. The same size sliding window is
used in user library to prevent out-of-range LBNs that
may cause RoB overflow.

2.3 Matching Candidates Finder
Matching Candidates Finder finds possible matches by
checking whether the input character accepted by the
start character of regex. During this process, we also
record the line number by counting “∖n” and displace-
ment by counting characters. The displacement and line
number within the file are recorded in separate regis-
ters. These matching candidates are encapsulated with
their respective contextual information to form tasks to
be processed by the next stage, the REMUs for exact
matches. These tasks essentially contain the positions of
matching candidates so that REMUs knows from where
to replay the data stream. This benefits the performance
of REMUs in two aspects: On one hand, these tasks are
independent from each other, and thus can be execut-
ed in parallel in REMUs without changing the search
results; On the other hand, each REMU only needs to
check a small segment of input stream and can quickly
reject/accept a possible match.
Since the task generation is merely a one character

comparison and counter updates, it can scale up easily
to match the bandwidth of incoming stream. Note that
when files (i.e. tables, log files) and results have special
patterns, all related tasks can be assigned to one REMU
in the worst case. To minimize performance impact of
input files, we incorporate randomness into the dispatch-
ing policy by shuffling the tasks generated within one
clock cycle before dispatching to REMUs.

2.4 Regex Matching Units (REMUs)
Regex processing generally involves two steps: compiling
and matching. The compiling process is interpreting the
regex into a piece of code that can be executed on com-
puter and the matching process is executing such code
against the input stream. We only ported the matching
process to hardware in SSD, since the compiling process
is required only once upon each query.

We use the similar method described in [47] and [12] to
generate the code in compiler. In addition, we optimize
the compiling process for the matching candidates finder,
which will be discussed in detail in Section 3.1. Although
these codes can be executed on computer directly, a
special hardware and an instruction set optimized for
the hardware need to be developed to realize the match-
ing process in storage. Since FPGA supports parallel
computing naturally, we propose a new instruction set

that is able to process more complex matching logic in
one instruction as compared to traditional forms. As
shown in Table 1, each instruction consists of an ac-
tion and operands. For instance, PPAIR can be used to
match a single character or two characters optionally,
i.e. ”PPAIR a,a” matches char “a” while ”PPAIR a,b”
matches character set “[ab]” and “PPAIR a,A” matches
case-insensitive “a”. This feature is useful and results
in better code efficiency. An example executable code
for searching regex “a(b|c)d” is shown in Figure 3. Note
that ”b|c” is interpreted using ”SPLIT” and ”JMP” and
”[bc]”, which has the same meaning as ”b|c” encoded
into ”PPAIR b,c”. The current version of the compiler
is not fully optimized for encoding efficiency, which is
one of our future works.

Figure 3: An example code for search regex
“a(b|c)d” (left) and “a[bc]d” (right). See Table
1 for instruction set.

We now design the REMU that can execute such
code in FPGA, fully exploiting parallelism. The code
generated by the compiler is stored in an instruction
buffer in FPGA with each entry corresponding to a
line in the code. We keep an action pointer (similar
to program counter, PC), which holds the bit map of
instruction buffer entries. That is, each bit in the action
pointer corresponds to an entry in the instruction buffer.
A value ”1” in a bit position indicates the corresponding
entry of the instruction buffer needs to be executed at
the cycle. The action pointer is updated in each clock
cycle to track where the code should be executed next.
Initially, the action pointer points to the start of the
code and executes line by line sequentially. When a
SPLIT is encountered, the action pointer is able to track
multiple entries at the same time thus realizing parallel
executions.

Figure 4 shows how REMU decides input string “abd”
as a complete match of the regex in Figure 3. The action
pointer is initialized to “1” in bit 1 and 0 in all other
bits to denote that the code is executed from line 1. The
input stream provides an “a” which is accepted by line
1 and then the action pointer is updated and REMU
now executes line 2. Note that line 2 is a SPLIT which

16

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

Table 1: The instruction set

Action Operands Description Action Operands Description
PPAIR a,b Match char a or char b JMP p Jump to line p
NPAIR a,b Not match char a and char b SPLIT p,q Track both p and q, where p and q are line numbers

PRANGE a,b Match ASCII code of a to b LSPLIT n,l,u,s
If counter n within lower bound l and upper bound u,
increase counter n by 1. Otherwise, jump to line s.

NRANGE a,b Not match ASCII code of a to b ACCEPT void The string is matched by the regex

Figure 4: An example of execution in REMU

requires the next input character to be compared with
both line 3 and 5. Here, REMU tracks the two lines by
marking bits 3 and 5 as “1” in the action pointer. Then,
the input character “b” matches line 3 but reject line
5, thus REMU continues to the line after line 3. After
running for a few clock cycles, REMU reaches line 7
which indicates the string “abd” is accepted by regex
“a(b|c)d”.

Note that the above described design of REMU is
one of the many methods of implementing regex search
using FPGA. It can be replaced by other designs such
as NFA [42, 55], DFA [17, 25], B-FSM [30, 50], bit-split
automata [20, 45] and so forth. Each method has its
advantage and best applicable field. Since our goal is to
eliminate the I/O bottleneck in searching unstructured
data, we focus on how to fit REMU into our proposed
search engine and adopting more advanced automata
designs in place of REMU is part of our future research.
Since REMU usually takes multiple clock cycles to

determine a complete match, several REMUs are mar-
shaled to multiply the processing rate, where each REMU
processes tasks dispatched by matching candidates find-
er independently and simultaneously. To provide data
streams for REMUs, we deploy cyclic data buffer to re-
play the data stream for each REMU. The input data
stream from NAND flash is saved in CDBs of matching
candidates finder and flushed out at results organizer by
manipulating a read and write pointer.

2.5 Results Organizer
In real-world applications, a search engine should present
the matched results in their order of positions in a file.

However, the intermediate results from REMUs are in
separate streams that need to be sorted in order. The
results organizer merges the ordered streams into one
by popping out the results of minimal displacement at a
time until all the results are sorted. Note that the com-
parison among all REMUs is required each clock cycle.
We pipeline the process, as shown in Figure 2, using a
tree structure where the results are merged hierarchically
to hide the time for comparisons.

3 REGISTOR SOFTWARE
We now describe the software design of Register, includ-
ing a user library and the data path. We focus on how
these software components are designed to coordinate
with Registor’s hardware.

3.1 User Library
The user library consists of APIs for users-level appli-
cations, a compiler generating executable code for Reg-
istor’s hardware, and an exception handler to improve
the robustness of the system.
The APIs: Table 2 lists two levels of APIs to users.
The higher-level APIs, registor sync read() and regis-
tor async read(), function in a similar way to Linux Grep.
These functions take two basic parameters: file name
and regex. The lower level APIs, registor blks sync read()
and registor blks async read(), provide functions similar
to direct I/O and let users process data based on a single
page or a page group. These functions takes three pa-
rameters: slba (starting logical block address), number of
blocks and regex. The slba information can be obtained
by calling registror file layout(). It will also check file ac-
cess permission based on the access control information
from file’s inode and credentials of the current process.
It is worth pointing out that these APIs can be used

for a wide span of real-world applications and Registor
can be easily tailored to large-scale text annotation for
search engines (e.g. Lucene [7]) or repurposed for data
queries in NoSQL or SQL database.
The efficiency-aware compiler: The compiler trans-
lates regex to executable code that is understandable by
Registor hardware. It consists of a lexer and a parser,
where the lexer breaks the regex into tokens and the pars-
er generates the abstract syntax tree (AST) using these

17

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

Table 2: APIs for user applications

API functions Description Parameters

registor sync read() read file synchronously with Registor processing file name, regex

registor async read() read file asynchronously with Registor processing file name, regex

registor file layout() retrieve file layout from SSD file name

registor blks sync read() synchronously read certain blocks with Registor processing slba, length, regex

registor blks async read() asynchronously read certain blocks with Registor processing slba, length, regex

tokens. The executable code can be obtained through
the preorder traversal of the AST.
We also provide another function that generates the

executable code to improve the efficiency of REMU.
The idea is to find a more specific node in AST as the
start of executable code. For instance, a deterministic
character “a” is more specific than a character class
“∖d”. In this case, the executable code starts with the
specific node and consists of two parts. The first part is
from the specific node to the end of preoder traversal
and the second part is from the specific node to the
start of preoder traversal. Recall that we find matching
candidates based on the first character of regex. Our
efficiency-aware compiler can reduce the total number of
matching candidates, making the REMUs more efficient.
The exception handler: Supporting an enterprise-
level system requires the software platform to achieve
robustness, reliability and availability beyond a simple
and accessible interface. Any command sent to Registor
hardware is validated through the syntax check function
and resource check function. When a syntax error oc-
curs, the error handler returns with a code to notify the
type of exceptions. However, not all regex that passes
syntax check can benefit from our proposed Registor due
to hardware resource limitation or being occupied by
other applications. For instance, the maximum times of
backtracking/loop and the allowable length of executable
code supported in REMU are subject to hardware re-
source constraints. The preemption in Registor hardware
may cause data consistency and integrity problem [8].
To address this issue, we add a lock to Registor to pre-
vent preemption. When an invalid input for hardware is
detected (e.g. over-depth backtracking, Registor hard-
ware unavailable), the error handler calls the integrated
software regex engine instead of using Registor hardware.
In our design, the amount of data returned to host

is restricted in size to less than the amount of data per
I/O request. If the search result exceeds such limit, the
excess is discarded and a bit in result to host is set to
indicate overflow. The exception handler then checks this
bit and reports an overflow to upper level applications.

3.2 Data Path
To ensure system-level performance, Registor system
features a well-designed data path that achieves low la-
tency and avoids interfering with the normal I/Os of
SSD. Registor hardware is placed aside the normal I/O
data path. Normal I/Os do not go through the Registor
path and hence not interfered by it. The Registor data
path is activated only upon a search request issued by
an application. In this case, there are two types of data
paths for Registor corresponding to the two phases of
processing: file layout query and regex search, as depicted
in Figure 5. Recall that retrieving file layout needs file
information, super blocks and inodes from SSD. The
data path for file layout query involves virtual file sys-
tem for file path, NVMe driver for data transfer, and
SSD controller to load super blocks and inodes from
NAND flash. Unlike file layout query that is executed
only once per search, regex search that has significant
impact on the overall performance. To reduce latency,
we interface user library directly to the NVMe device
drivers, bypassing file system. We avoid modifying the
operating system by augmenting extended NVMe com-
mands through optional command field defined in NVMe
standards. The added NVMe command set is listed in
Table 3. These newly added NVMe commands are com-
patible with standard NVMe and no modifications are
made in the operating system, making Registor readily
available to user applications. The results from Registor
hardware are regarded as normal data blocks requested
by normal I/O read command and are sent directly to
NVMe driver without the interference of SSD controller,
which simplifies the internal control and reduces latency.

4 EXPERIMENTAL SETUP
For the purpose of evaluation of Registor, we have built
a working prototype of Registor. This section presents
details of its implementation, experimental setup, tools
and workloads used in our evaluation.

4.1 Implementation
The entire Registor hardware has been implemented
on Xilinx FPGA, the UltraScale+ chip, using Verilog

18

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

Table 3: Extended NVMe commands for Registor

Command Description Parameters

rgt fsm inst Send executable code generated by the compiler to device devID, code

rgt sync pis read read Registor results synchronously devID, slba, len

rgt sync data read read raw data synchronously for exception handling devID, slba, len

rgt async data read read raw data asynchronously for exception handling devID, slba, len

Figure 5: The data path of Registor

language. The RTL of the implementation is integrated
in an in-house enterprise-level SSD prototype, as shown
in Figure 6 and Table 4.

Figure 6: NVMe-SSD with Registor

The user library is implemented in C at application
layer of the host system running Linux OS Ubuntu 16.04.
The standard parser and lexer in our compiler are de-
veloped based on Flex and Bison [27]. The extended
NVMe command is implemented by using the reserved
bits (15:08) of Write-Command Dword 13 in NVMe
standard revision 1.3a [14]. The file layout retrieval is
implemented using ioctl() system call provided by Linux
kernels for userspace to get file extent mappings.

To make the system latency-insensitive, We implement-
ed the hardware pipeline with back-pressure mechanism
that the latter stage in the pipeline can request the for-
mer stage to temporarily stop its production of data. We
use 1MB RoB and the data block size is 4KB. Since the

Table 4: Specification of the SSD

FPGA Xilinx Ultrascale+ 9P, xcvu9pflgb2104-2

DRAM 9X1GB in which 1GB for ECC

NAND flash 32x256GB, 8TB in total

Interface PCIE Gen 3x4

internal data bus width of our SSD prototype is 16B,
we implemented 16 REMUs that can be expended to
32 or more if the bus width is expanded. The length
of code supported in each REMU is limited to 32 for
the demonstration purpose. To reduce the use of RAM
resources, we deploy 8 CDBs (cyclic data buffers) for 16
REMUs where 2 REMUs share 1 CDB and the size of
each CDB is 4KB, same as the size of one data block.
When contention occurs, we use round robin algorithm
to serve the read requests from two REMUs in turns.

4.2 Performance Measurement
We conduct our experiments using a host server with
a quad-core Intel i7-7700 processor running at a clock
rate of 3.6 GHz and 8GB memory. The NVMe-SSD card
is directly plugged into a PCIe slot of the server. Our
SSD prototype card is functioning at the time of this
submission but not very stable. The clock speed of the
FPGA is just 100 MHz during our measurement exper-
iments. It is currently being optimized and tuned for
higher clock speed. For reporting Registor performance
and comparative analysis, it serves the purpose. Besides
actual measurements on the prototype, we carry out
simulation experiments using System Verilog Universal
Verification Methodology (UVM). As for power consump-
tion, we apply both actual measurement and Vectorless
Power Analysis, a standard tool for power estimation
and analysis in Xilinx FPGA.

Benchmarks that we select to drive our measurements
include network intrusion detection (NIDS), web da-
ta mining, and text processing. All the regex and files
are either from third party or real world environment
with the file size varied from 20MB to 60GB. Over 100
regex are tested that have a variety of patterns and fit
the hardware restriction of Registor. The first group of
benchmarks is for NIDS. We extract regex from Snort

19

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

community library [3] and generate files using the file
generator proposed in [9]. The file generator features an
adjustable parameter 𝑃𝑚, denoting the probability of
experiencing malicious traffic. The NIDS (𝑃𝑚 = 𝑣𝑎𝑙𝑢𝑒)
benchmarks are pathological where the higher value of
𝑃𝑚 means more cycles in regex processing. We also
collect router data (named router-level NIDS) from our
high-performance computer lab by using PSAD (Intru-
sion Detection and Log Analysis with iptables) and use
suspicious IP addresses as regex. The second group of
workloads is protomata and poweren, from ANMLZoo
[51] for the evaluation of automata-processing engines.
For web data mining, we use enwiki from wikipedia and
perform string search on this sizable file (60GB). The
benchmark for text processing is from a third party test
[1] where regex of various syntax are applied to portions
of a famous book [53].

5 RESULTS AND DISCUSSIONS
Registor system is evaluated in terms of throughput,
CPU utilization, I/O bus utilization, and power con-
sumption. The throughput is computed by dividing file
size in terms of the number of characters by the execu-
tion time of search the entire file. We use Linux Grep, a
command-line utility in Linux, as the base line for perfor-
mance comparison purpose. In addition, more advanced
software packages for regex matching are also considered
in our performance comparison such as RE2, PCRE and
Onig-uruma. RE2 is developed and used by Google and
PCRE, Perl Compatible Regular Expressions, is used by
a number of programs including Apache HTTP Server,
R scripting language and so forth. Onig-uruma is used
by Ruby programming language as well as many other
products, e.g. Atom, Tera Term, Sublime Text.

5.1 Throughput
Our first experiment is to measure the search throughput
of Registor as compared with baseline. We pick up the
first 2.1GB of enwiki file as microbenchmark. The search
throughput of Registor is compared with Linux Grep.
The measured throughput is depicted in Figure 7. It can
be seen from Figure 7 that Registor shows much better
performance compared to Linux Grep. Throughput of
Linux Grep is 214MB/s while the throughout of Registor
is 382MB/s. Note that these throughputs were measured
on the SSD prototype that is still under development and
being tuned for better I/O performance. The internal bus
width is 16B and the FPGA is running at 100MHz. Even
with this compromised configuration, Registor still shows
better performance than Linux Grep. By expanding bus
width to 32B and raising clock speed to 300MHz in

FPGA, commonly seen in modern SSDs, Registor is able
to achieve the throughput of 2.3GB/s and outperforms
Linux Grep by more than 10x. We expect much better
throughput if Registor is implemented in an ASIC with
much higher clock rate and optimized I/O performance.

Figure 7: Throughput of Registor under different
configurations compared to Linux Grep

Our next experiment is to measure throughput using
UVM test (see Section 4.2). We measured Registor’s
throughput and compared it to several widely used soft-
ware regex engines. This method is based on real bitfile
and is accurate to clock cycle. For software regex search
engines, we load the file into memory and then run
regex search engines with the basic counting function
excluding the time of loading files, results formatting
and displaying. Figure 8 shows that the throughputs
vary among different benchmarks since the regex and
files are of different patterns and types. As expected, the
NIDS benchmarks of higher 𝑃𝑚 value results in lower
throughput because more cycles in processing. For most
of the applications, Registor achieves higher throughput
than software even when running at 150MHz. When
running at 300MHz clock speed (usually in ASIC imple-
mentation), the throughput is as high as 3.2GB/s which
outperforms traditional regex search engines by 16x.

5.2 CPU Utilization
To evaluate Registor’s effect on CPU workload, we mea-
sured the CPU utilization of Registor and compared
it to Linux Grep. The experiment is conducted by us-
ing microbenchmark (also used in Section 5.1) and “ps”
command in Linux system with Registor and Linux
Grep, receptively. Figure 9 plots the CPU utilization
over time. During the runtime, the average CPU uti-
lization of Registor is 11.90% while that of Linux Grep
is 70.09%, implying Registor consumes 82% less CPU
resources then Linux Grep. This is because Registor of-
floads compute-intensive tasks to FPGA. The only func-
tions that consumes CPU resources are the user library

20

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

Figure 8: Throughput comparison among different search engines

and APIs that are simple and light weight. Therefore,
Registor consumes almost no CPU clock cycles as com-
pared to Linux Grep. The remaining CPU resources can
be used by other applications.

Figure 9: CPU utilization of Registor and Linux
Grep

5.3 I/O Bus Utilization
To better illustrate reduction in I/O bus utilization of
Registor over other software solutions, we measured data
transfer ratio (a value between 0% to 100%), calculated
by dividing the size of data transferred from SSD to host
by file size. Since NVMe’s read command can request
up to 128kB data per I/O and the minimum size of
data transfered to host is 4kB, the data transfer ratio in
the best scenario is 4kB/128kB = 3.125%. For software
solution, the data transfer ratio is a constant value of
100% because the whole file is loaded to host for further
scanning.
Figure 10 shows the data transfer ratios of Registor

for different benchmarks with different file sizes. We
observed that all values are below 5% indicating that
Registor reduces I/O bus utilization dramatically for all
our experiments. Although the ratio depends on how
selective the regex is and can possibly reach 100% in
some extreme cases, Registor is able to reduce data

transfer ratio to exactly the regex matches, which is a
small fraction of total data in most applications. In most
of the cases in our experiments, which are from third
party and real-world applications, the ratios are close
to 3.125%, the minimum value of data transfer ratio in
our design. It is obvious that Registor exhibits much less
negative impacts on other applications in I/O bandwidth,
a tiny fraction of file to the host. Putting it in a different
perspective, such reduction on I/O bus utilization can
also be interpreted as increased IOPS that Registor can
offer. For example, data transfer ratio of 3.125% means
that a 100K IOPS SSD with Registor enabled provides
regex search applications with equivalent 3.175 million
IOPS of SSD without Registor.

Figure 10: Data transfer ratio (the size of data
transferred from SSD to host divided by file size)

To further illustrate how Registor alleviates I/O bot-
tleneck problem, we analyze effective throughput and re-
quired throughput by applications. The effective through-
put is what Registor can offer to regex applications while
the required throughput is a measure for the necessary
I/O throughput in order for an application to achieve
a desired effective throughput. Figure 11 plots the ef-
fective throughput and required throughput of Registor
when it is implemented in 1GHz ASIC with internal bus
width of 64B. It can be seen from this figure that, for all

21

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

Figure 11: The effective throughput and required
throughput of Registor

Table 5: Summary of power consumption

DRAM 0.4198W

FPGA
8.7918W
Registor: 0.119W

NAND 2.7888W

Others 3.2396W

Total power 15.24W

benchmarks, the required throughput of Registor is far
below what current PCIe can provide. For about half of
the benchmarks, the effective throughputs of Registor
match the bandwidth of modern DRAM memory.

5.4 Area and Power Consumption
In our current implementation, the SSD prototype uses
78% of LUTs and logic cells in Xilinx 9p FPGA board
including SSD controller, AXI bus, LDPC and some
other modules that are necessary for a working SSD.
Registor hardware consumes 9% of the board’s logic cell
contributing about 11.5% of the total logic cells of the
SSD prototype.

As for power consumption, we apply both actual mea-
surement and STA method (introduced in section 4.2) to
measure energy efficiency. Measured power consumption
of the SSD prototype and the power usage of Regis-
tor hardware are shown in Table 5. As summarized in
Table 5, Registor hardware consumes 0.119W which is
only a tiny fraction (less then 1%) of the total power
consumption of the SSD prototype.

6 RELATED WORK
Regex search acceleration: Extensive research has
been reported in accelerating regex search over the past
decade. Some researchers take advantage of GPU [28, 56],
SIMD [11, 29, 39], and multi-core architectures [35] while

others focus on FPGA/ASIC based solutions [10, 17, 20,
22, 25, 38, 42, 43, 46, 55].

Early work discusses regex search in FPGA/ASIC by
mapping non-deterministic finite automata (NFA) [42,
55] and deterministic finite automata (DFA) [10, 17, 25]
to programmable logic. Recent study [20] by Vaibhav
et al. proposed HARE, extended from [46], compiles
regex into subexpressions and runs bit-split automata
[45] on each subexpression in parallel to achieve high
throughput. IBM PowerEN integrates an ASIC-based
regex engine (RegX) that splits regex into sub-patterns
to reduce the size of states (in DFA) and then uses a
local results processer to check if the partial results are
in the right order [30, 50]. Another generalized ASIC-
based accelerator is Micron’s Automata Processor (AP)
[13]. It is capable of processing large NFA whose state
transitions are stored in bit vectors and being executed
via customizable routing matrix. The most recent work
by Subramaniyan and Das [44] breaks the the bottleneck
on Micron’s AP by parallelizing NFA execution by means
of leveraging AP’s flow and special properties of NFA.
Fang et al. propose Unified Automata Processer (UAP)
architecture that features a programmable engine for
finite automata (FA) and supports a wide range of FA
models [15].
The above mentioned work achieves encouraging

progress in accelerating regex search and most of them
are designed for network intrusion detection or in-
memory pattern matching. With different optimization
objectives and different architecture level from above
mentioned work, our proposed Registor works in different
manners: (1) It is located inside SSD for the purpose of
eliminating I/O bottlenecks on processing large amount
of data stored in storage; (2) It is capable of extracting
file semantics from data blocks and providing host with
contextual information of search results.
Near data processing (NDP): The benefits of NDP
have been demonstrated by many researchers at different
levels of system hierarchy such as in-memory computing
[4, 19, 26, 54] and processing in storage [8, 21, 23, 41,
48, 49].

Some existing work exploits the computational pow-
er of SSD controller by offloading the data-intensive
tasks to the embedded cores [48, 49]. Tiwari and et al.
[48] present a detailed energy and performance models
for data analysis using embedded cores in SSD. Tseng
et al [49] implement Morpheus-SSD targeted at object
deserialization on a hybrid architecture of GPU, CPU
and embedded cores. They reduce the overhead of data
transmission between embedded cores and GPU by us-
ing the NVMe-P2P mechanism. Unlike their approaches,
Registor’s design considers scenarios when embedded

22

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

cores are heavily loaded by SSD control functions. We
offload computations to an FPGA and have it sit in the
internal data path between NAND flash to host interface
to achieve on-the-fly regex search.

Some other groups integrate FPGA/ASIC in SSD for
computing purpose [21, 23, 41]. Willow SSD by Seshadri
et al. [41] allows users to implement customized features
to support particular applications by deploying several
RISC processors in SSD, using a BEE3 FPGA-based
prototype [33]. Gu et al [21] propose Biscuit, an NDP
framework, that includes a hardware pattern matcher for
string search in each channels of NAND chips. BlueDBM
[23] applies in-storage processing to big data analytics
which integrates Morris-Pratt (MP) string search engine
in SSD [34]. Different from the above mentioned work,
Registor eliminates I/O bottlenecks in unstructured data
processing that requires regex search, which has higher
computational complexity than string search.

7 CONCLUSION
We presented Registor, a platform for regex processing
in storage. It features a hardware search engine that
applies regex search on-the-fly while data is transfered
from NAND flash to host. The search engine achieves
high processing rate that matches the speed of internal
bus in SSD by fully exploiting the parallelism in FPGA.
The deep pipeline structure of Registor consists of file
semantics extractor, matching candidates finder, regex
matching units, and results organizer. Furthermore, we
developed a user library to facilitate the upper-layer
applications to take advantage of the search engine. In
order to quantitatively evaluate Registor’s performance,
we built a working prototype of Registor that was inte-
grated into an NMVe-SSD card. The implementation of
Registor needs no OS changes, making Registor readily
available to user applications. Using the Registor pro-
totype, we carried out extensive experiments to show
its superb advantages over existing solutions in terms
of eliminating I/O bottleneck. Our future work includes
adopting more advanced automata designs in our Regis-
tor and further optimization of I/O path inside our SSD
prototype.

8 ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for
their valuable comments that helped greatly in improv-
ing the quality of the paper. The authors are thankful to
Shuqun Xie, Qingchun Zhu, Ying Yang, Archie Wu, Pan
Qin for providing guidance to this work. This research is
supported in part by the NSF grants CCF-1439011 and
CCF-1421823. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the NSF. It is also partly supported by a research contrac-
t between URI and Shenzhen Dapu Microelectronics Co.,
Ltd, Shenzhen Peacock Plan (KQTD2015091716453118).

REFERENCES
[1] [n. d.]. Performance comparison of regular expression en-

gines. http://sljit.sourceforge.net/regex perf.html. ([n. d.]).
Accessed April 4, 2017.

[2] [n. d.]. Regular expression library. http://regexlib.com/. ([n.

d.]). Accessed April 4, 2017.

[3] [n. d.]. Snort - Network Intrusion Detection and Prevention
System. https://www.snort.org/. ([n. d.]). Accessed April 4,

2017.

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi. 2015. A scalable processing-in-memory
accelerator for parallel graph processing. In Computer Archi-
tecture (ISCA), 2015 ACM/IEEE 42nd Annual International

Symposium on. IEEE, 105–117.

[5] Shahriar Akter and Samuel Fosso Wamba. 2016. Big data
analytics in E-commerce: a systematic review and agenda for

future research. Electronic Markets 26, 2 (2016), 173–194.

[6] Amazon. 2018. Amazon S3. (2018). https://aws.amazon.com/
s3/

[7] apache. 2018. Lucene. (2018). https://lucene.apache.org/

[8] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and
Goetz Brasche. 2017. It’s Time to Think About an Operating

System for Near Data Processing Architectures. In Proceedings
of the 16th Workshop on Hot Topics in Operating Systems.

ACM, 56–61.

[9] Michela Becchi, Mark Franklin, and Patrick Crowley. 2008. A
workload for evaluating deep packet inspection architectures.

In Workload Characterization, 2008. IISWC 2008. IEEE

International Symposium on. IEEE, 79–89.
[10] Benjamin C Brodie, David E Taylor, and Ron K Cytron. 2006.

A scalable architecture for high-throughput regular-expression

pattern matching. ACM SIGARCH computer architecture
news 34, 2 (2006), 191–202.

[11] Robert D Cameron, Thomas C Shermer, Arrvindh Shriraman,
Kenneth S Herdy, Dan Lin, Benjamin R Hull, and Meng
Lin. 2014. Bitwise data parallelism in regular expression

matching. In Proceedings of the 23rd international conference
on Parallel architectures and compilation. ACM, 139–150.

[12] Russ Cox. 2009. Regular expression matching: the virtual ma-

chine approach. URL: http://swtch. com/rsc/regexp/regexp2.
html (2009).

[13] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Lev-

enthal, and Harold Noyes. 2014. An efficient and scalable
semiconductor architecture for parallel automata processing.

IEEE Transactions on Parallel and Distributed Systems 25,

12 (2014), 3088–3098.
[14] NVM Express. 2018. NVM Express Revision 1.3a October 24,

2017. (2018). http://nvmexpress.org/wp-content/uploads/
NVM-Express-1 3a-20171024 ratified.pdf

[15] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A

Chien. 2015. Fast support for unstructured data processing:
The unified automata processor. In Microarchitecture (MI-
CRO), 2015 48th Annual IEEE/ACM International Sympo-

sium on. IEEE, 533–545.

23

http://sljit.sourceforge.net/regex_perf.html
http://regexlib.com/
https://www.snort.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://lucene.apache.org/
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel Shuyi Pei, Jing Yang and Qing Yang

[16] Yuanwei Fang, Chen Zou, Aaron J Elmore, and Andrew A
Chien. 2017. UDP: a programmable accelerator for extract-
transform-load workloads and more. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. ACM, 55–68.

[17] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio

Vitucci, Gianni Antichi, and Andrea Di Pietro. 2008. An
improved DFA for fast regular expression matching. ACM
SIGCOMM Computer Communication Review 38, 5 (2008),

29–40.
[18] Amir Gandomi and Murtaza Haider. 2015. Beyond the hype:

Big data concepts, methods, and analytics. International

Journal of Information Management 35, 2 (2015), 137–144.
[19] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015.

Practical near-data processing for in-memory analytics frame-
works. In Parallel Architecture and Compilation (PACT),

2015 International Conference on. IEEE, 113–124.

[20] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris
D’Antoni, and Thomas F Wenisch. 2016. HARE: Hardware
accelerator for regular expressions. In Microarchitecture (MI-

CRO), 2016 49th Annual IEEE/ACM International Sympo-
sium on. IEEE, 1–12.

[21] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jiny-

oung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang K-
won, Chanho Yoon, Sangyeun Cho, et al. 2016. Biscuit: A
framework for near-data processing of big data workloads.
In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd

Annual International Symposium on. IEEE, 153–165.

[22] Titan IC. 2018. Hyperion F1 10G Regex File
Scan. (2018). http://titan-ic.com/products/

hyperion-f1-10g-regex-file-scan

[23] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John
Ankcorn, Myron King, Shuotao Xu, et al. 2015. Bluedbm:
An appliance for big data analytics. In Computer Architec-

ture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 1–13.

[24] Avita Katal, Mohammad Wazid, and RH Goudar. 2013. Big

data: issues, challenges, tools and good practices. In Contem-
porary Computing (IC3), 2013 Sixth International Conference
on. IEEE, 404–409.

[25] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick

Crowley, and Jonathan Turner. 2006. Algorithms to accel-
erate multiple regular expressions matching for deep packet
inspection. In ACM SIGCOMM Computer Communication

Review, Vol. 36. ACM, 339–350.

[26] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srini-
vasan, Dan Lin, and Jordon Phillips. 2014. SQRL: hardware

accelerator for collecting software data structures. In Pro-

ceedings of the 23rd international conference on Parallel
architectures and compilation. ACM, 475–476.

[27] John Levine. 2009. Flex & Bison: Text Processing Tools. ”
O’Reilly Media, Inc.”.

[28] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and

Shih-Chieh Chang. 2013. Accelerating pattern matching using
a novel parallel algorithm on GPUs. IEEE Trans. Comput.

62, 10 (2013), 1906–1916.

[29] Dan Lin, Nigel Medforth, Kenneth S Herdy, Arrvindh Shri-
raman, and Rob Cameron. 2012. Parabix: Boosting the effi-

ciency of text processing on commodity processors. In High

Performance Computer Architecture (HPCA), 2012 IEEE
18th International Symposium on. IEEE, 1–12.

[30] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora
Biran, Uzi Shvadron, and Kubilay Atasu. 2012. Designing a
programmable wire-speed regular-expression matching accel-

erator. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Com-
puter Society, 461–472.

[31] Micron. 2018. MT29F16G08ABCCBH1-10ITZ. (2018).
https://www.micron.com/parts/nand-flash/mass-storage/
mt29f16g08abccbh1-10itz?pc=

[32] Micron. 2018. MT29F2T08CUHBBM4-3R. (2018).
https://www.micron.com/parts/nand-flash/3d-nand/
mt29f2t08cuhbbm4-3r?pc=

[33] Microsoft. 2018. BEE3 Established: February 26, 2008. (2018).
https://www.microsoft.com/en-us/research/project/bee3/

[34] James Morris Jr and Vaughan Pratt. 1970. A linear pattern-
matching algorithm.

[35] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte.
2014. Data-parallel finite-state machines. In ACM SIGARCH
Computer Architecture News, Vol. 42. ACM, 529–542.

[36] PCI-SIG. 2018. Frequently Asked Questions PCI Express

- 3.0. (2018). https://pcisig.com/faq?field category value%
5B%5D=pci express 3.0&keys=

[37] PCI-SIG. 2018. Frequently Asked Questions PCI Express

- 4.0. (2018). https://pcisig.com/faq?field category value%
5B%5D=pci express 4.0&keys=

[38] Indranil Roy, Ankit Srivastava, Marziyeh Nourian, Michela
Becchi, and Srinivas Aluru. 2016. High performance pattern

matching using the automata processor. In Parallel and Dis-
tributed Processing Symposium, 2016 IEEE International.
IEEE, 1123–1132.

[39] Valentina Salapura, Tejas Karkhanis, Priya Nagpurkar, and
Jose Moreira. 2012. Accelerating business analytics applica-
tions. In High Performance Computer Architecture (HPCA),
2012 IEEE 18th International Symposium on. IEEE, 1–10.

[40] Eric E Schadt, Michael D Linderman, Jon Sorenson, Lawrence
Lee, and Garry P Nolan. 2010. Computational solutions to
large-scale data management and analysis. Nature Reviews

Genetics 11, 9 (2010), 647.
[41] Sudharsan Seshadri, Mark Gahagan, Meenakshi Sundaram

Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang Liu,
and Steven Swanson. 2014. Willow: A User-Programmable

SSD.. In OSDI. 67–80.

[42] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular
expression matching using FPGAs. In Field-Programmable

Custom Computing Machines, 2001. FCCM’01. The 9th An-

nual IEEE Symposium on. IEEE, 227–238.
[43] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo

Alonso. 2017. Accelerating pattern matching queries in hybrid

CPU-FPGA architectures. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM,

403–415.
[44] Arun Subramaniyan and Reetuparna Das. 2017. Parallel Au-

tomata Processor. In Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture. ACM, 600–612.
[45] Lin Tan and Timothy Sherwood. 2005. A high through-

put string matching architecture for intrusion detection and

prevention. In Computer Architecture, 2005. ISCA’05. Pro-
ceedings. 32nd International Symposium on. IEEE, 112–122.

[46] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella,

and Thomas F Wenisch. 2016. Hawk: Hardware support for
unstructured log processing. In Data Engineering (ICDE),

24

http://titan-ic.com/products/hyperion-f1-10g-regex-file-scan
http://titan-ic.com/products/hyperion-f1-10g-regex-file-scan
https://www.micron.com/parts/nand-flash/mass-storage/mt29f16g08abccbh1-10itz?pc=
https://www.micron.com/parts/nand-flash/mass-storage/mt29f16g08abccbh1-10itz?pc=
https://www.micron.com/parts/nand-flash/3d-nand/mt29f2t08cuhbbm4-3r?pc=
https://www.micron.com/parts/nand-flash/3d-nand/mt29f2t08cuhbbm4-3r?pc=
https://www.microsoft.com/en-us/research/project/bee3/
https://pcisig.com/faq?field_category_value%5B%5D=pci_express_3.0&keys=
https://pcisig.com/faq?field_category_value%5B%5D=pci_express_3.0&keys=
https://pcisig.com/faq?field_category_value%5B%5D=pci_express_4.0&keys=
https://pcisig.com/faq?field_category_value%5B%5D=pci_express_4.0&keys=

REGISTOR SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

2016 IEEE 32nd International Conference on. IEEE, 469–
480.

[47] Ken Thompson. 1968. Programming techniques: Regular

expression search algorithm. Commun. ACM 11, 6 (1968),
419–422.

[48] Devesh Tiwari, Simona Boboila, Sudharshan S Vazhkudai,

Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and Yan Soli-
hin. 2013. Active flash: towards energy-efficient, in-situ data
analytics on extreme-scale machines.. In FAST. 119–132.

[49] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Ga-
hagan, and Steven Swanson. 2016. Morpheus: creating ap-
plication objects efficiently for heterogeneous computing. In

Computer Architecture (ISCA), 2016 ACM/IEEE 43rd An-
nual International Symposium on. IEEE, 53–65.

[50] Jan van Lunteren and Alexis Guanella. 2012. Hardware-
accelerated regular expression matching at multiple tens of

Gb/s. In INFOCOM, 2012 Proceedings IEEE. IEEE, 1737–
1745.

[51] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tra-
cy II, Deyuan Guo, Elaheh Sadredini, Ke Wang, Chunkun

Bo, Gabriel Robins, Mircea Stan, et al. 2016. ANMLzoo:
a benchmark suite for exploring bottlenecks in automata
processing engines and architectures. In Workload Character-

ization (IISWC), 2016 IEEE International Symposium on.
IEEE, 1–12.

[52] Fei-Yue Wang, Kathleen M Carley, Daniel Zeng, and Wenji
Mao. 2007. Social computing: From social informatics to

social intelligence. IEEE Intelligent systems 22, 2 (2007).

[53] www.gutenberg.org. 2018. The Entire Project Gutenberg
Works of Mark Twain by Mark Twain. (2018). http://www.

gutenberg.org/ebooks/3200?msg=welcome stranger

[54] Sam Likun Xi, Oreoluwa Babarinsa, Manos Athanassoulis, and
Stratos Idreos. 2015. Beyond the wall: Near-data processing for
databases. In Proceedings of the 11th International Workshop

on Data Management on New Hardware. ACM, 2.
[55] Yi-Hua E Yang, Weirong Jiang, and Viktor K Prasanna. 2008.

Compact architecture for high-throughput regular expression

matching on FPGA. In Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communi-
cations Systems. ACM, 30–39.

[56] Xiaodong Yu and Michela Becchi. 2013. GPU acceleration of

regular expression matching for large datasets: exploring the
implementation space. In Proceedings of the ACM Interna-
tional Conference on Computing Frontiers. ACM, 18.

25

http://www.gutenberg.org/ebooks/3200?msg=welcome_stranger
http://www.gutenberg.org/ebooks/3200?msg=welcome_stranger

	Abstract
	1 Introduction
	2 Registor Hardware
	2.1 Overview
	2.2 File Semantics Extractor
	2.3 Matching Candidates Finder
	2.4 Regex Matching Units (REMUs)
	2.5 Results Organizer

	3 Registor Software
	3.1 User Library
	3.2 Data Path

	4 Experimental Setup
	4.1 Implementation
	4.2 Performance Measurement

	5 Results and Discussions
	5.1 Throughput
	5.2 CPU Utilization
	5.3 I/O Bus Utilization
	5.4 Area and Power Consumption

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

