CLOCK-Pro+: Improving CLOCK-Pro Cache Replacement with Utility-Driven Adaptation

Cong Li, Intel Corporation
Outline

• Introduction: Cache & Page Replacement
• Background: CLOCK-Pro & CLOCK for Adaptive Replacement
• The New Policy w/ Utility-Driven Adaptation: CLOCK-Pro+
• Experimental Results
• Conclusion
Introduction

• **Buffer Cache Replacement**
 - Determine the victim to be replaced given a new data block to be loaded
 - Many policies proposed, e.g., LRU, ARC, LIRS, etc.

• **CLOCK**
 - Data manipulation w/ a hit → lock contention problem in low hit latency scenario
 ✓ Page replacement in virtual memory management
CLOCK-Pro

- Reuse Distance
 - Distance of a referenced page away from the top
 - Page w/ a low reuse distance → more likely to be accessed in the future

- CLOCK-Pro
 - Efficiently discriminate hot pages (low reuse distances) from cold pages (high reuse distances)
 ✓ Approximating LIRS policy
 ✓ Adapting to LRU-friendly workloads
CLOCK-Pro

- **Hot page**
- **Resident cold page**
- **Non-resident cold page**
- **Referenced**
CLOCK-Pro

Best case reuse distance

$\text{HAND}_{\text{cold}}$

HAND_{hot}

$\text{HAND}_{\text{test}}$

Access

Hot page

 Resident cold page

Non-resident cold page

Referenced

12th ACM International Systems & Storage Conference (SYSTOR 2019)
CLOCK-Pro

Cold page promotion & hot page demotion

Move to head

Demotion

Promotion

HAND_{hot}

$\text{HAND}_{\text{test}}$

$\text{HAND}_{\text{cold}}$
CLOCK-Pro

HAND_{\text{test}} & HAND_{\text{cold}} & HAND_{\text{hot}}

HAND_{\text{hot}} & \textit{HAND}_{\text{test}} \text{ move}

Test period terminates & non-resident page discarded
Many new pages come.

Limit clock size by terminating test pages with $H\!A\!N\!D_{\text{test}}$.
Weakness w/o Adaptation

- **Static Cache Space Allocation**
 - Small number of resident cold pages close to head position
 - Non-resident cold pages interleaved w/ hot pages

- **When Reuse Distance Is not a Good Predictor (or does not Exist)**
 - Frequent accesses to close-to-head non-resident cold pages result in misses
 - Can be captured with a basic CLOCK policy
 - Example: stack depth distribution (SDD) workload

CLOCK-Pro w/o adaptation is not good enough
CLOCK-Pro w/ Adaptation

• **Idea**
 - Cold page access → LRU friendly
 - Test period expiration → need more hot pages to extend test period

• **Issue**
 - Simple heuristics w/o utility analysis, e.g.,
 - Resident cold page accesses → not necessary to increase cold page number
 - Many test pages expire → more hot pages may not help

CLOCK-Pro w/ adaptation is still not good enough
CLOCK w/ Adaptive Replacement (CAR)

- **Recency vs. Frequency**
 - Varying & requiring dynamic adaptation

- **CAR (Approximation of ARC)**
 - Maintain 2 different CLOCKs & 2 different shadow lists
 - 1 CLOCK & 1 shadow list for recency (1 recent access)
 - 1 CLOCK & 1 shadow list for frequency (at least 2 recent accesses)
 - Utility-driven adaptation to dynamically adjust the 2 CLOCKs
CAR

Recency pages: pages with at most 1 recent access only

Recency CLOCK T_1

Recency shadow list B_1

Frequency pages: pages with at least 2 recent accesses

Frequency CLOCK T_2

Frequency shadow list B_2
CAR

Recency pages: pages w/ 1 recent accesses only

Frequency pages: pages w/ at least 2 recent accesses

Recency shadow list B_1 → growing T_1

Access recency shadow list \rightarrow growing T_1

Incremental utility quantified as $P_1 = 1/|B_1|$

Frequency shadow list B_2 → growing T_2

Access frequency shadow list \rightarrow growing T_2

Incremental utility quantified as $P_2 = 1/|B_2|$
CAR

Recency pages: pages w/ 1 recent accesses only

Frequency pages: pages w/ at least 2 recent accesses

Recency CLOCK T_1

Frequency CLOCK T_2

Recency shadow list B_1

Frequency shadow list B_2

Adjustment given a B_1 access:

$|T_1| \leftarrow |T_1| + \max \{1, P_1 / P_2\}$

Adjustment given a B_2 access:

$|T_2| \leftarrow |T_2| + \max \{1, P_2 / P_1\}$
CAR (cont.)

• **Frequency CLOCK & Shadow List**
 • Contain less granular information

• **Without a Fine-Grained Metric like Reuse Distance**
 • Less capable in capturing repeated accesses w/ relatively long temporal distances (weak locality)

CAR is not good enough as well
CLOCK-Pro vs CAR (a Glance)

<table>
<thead>
<tr>
<th>Trace (cache size)</th>
<th>CLOCK-Pro</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSearch1 (131072)</td>
<td>13.10%</td>
<td>8.32%</td>
</tr>
<tr>
<td>WebSearch1 (262144)</td>
<td>24.91%</td>
<td>14.90%</td>
</tr>
<tr>
<td>WebSearch1 (524288)</td>
<td>40.36%</td>
<td>32.78%</td>
</tr>
<tr>
<td>WebSearch2 (262144)</td>
<td>29.80%</td>
<td>26.94%</td>
</tr>
<tr>
<td>WebSearch2 (524288)</td>
<td>48.35%</td>
<td>41.72%</td>
</tr>
<tr>
<td>WebSearch3 (262144)</td>
<td>29.66%</td>
<td>26.68%</td>
</tr>
<tr>
<td>WebSearch3 (524288)</td>
<td>48.21%</td>
<td>41.40%</td>
</tr>
<tr>
<td>Financial1 (512)</td>
<td>17.78%</td>
<td>23.17%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>20.62%</td>
<td>26.02%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>24.16%</td>
<td>29.38%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>27.58%</td>
<td>32.61%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>31.31%</td>
<td>35.72%</td>
</tr>
</tbody>
</table>

No consistent winner

<table>
<thead>
<tr>
<th>Trace (cache size)</th>
<th>CLOCK-Pro</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDD (256)</td>
<td>17.10%</td>
<td>20.40%</td>
</tr>
<tr>
<td>SDD (512)</td>
<td>31.60%</td>
<td>36.75%</td>
</tr>
</tbody>
</table>

CLOCK-Pro outperforms CAR
CAR outperforms CLOCK-Pro
Idea of CLOCK-Pro+

• **Idea Inspired by CAR**
 - Dynamic adaptation in CLOCK-Pro using a CAR-style utility evaluation
 - ✓ When reuse distance is a good predictor, more space allocated to hot pages
 - ✓ When reuse distance is not a good predictor, more space allocated to cold pages

• **Determining Predictor Goodness**
 - Accessing non-resident cold pages
 - Inappropriately demoting hot pages (hit shortly after demotion)
Adaptation in CLOCK-Pro+

Resident cold pages demoted from hot pages

C_n: current number of non-resident pages

C_d: current number of resident cold pages demoted from hot pages
Adaptation in CLOCK-Pro+

Grow resident cold page size
Utility quantified as $P_{\bar{n}} = 1/C_n$
Adaptation in CLOCK-Pro+

Growing hot page size
Utility quantified as $P_{\bar{d}} = 1/C_d$
Adaptation in CLOCK-Pro+

\[\text{HAND}_{\text{test}} \rightarrow \text{HAND}_{\text{hot}} \rightarrow \text{HAND}_{\text{cold}} \rightarrow \text{Access} \]

Grow resident cold page size by \(\max\{1, \frac{P_{\bar{m}}}{P_{\bar{d}}}\} \)
Adaptation in CLOCK-Pro+

Grow hot page size by
\[\max\{1, \frac{P_{\bar{d}}}{P_{\bar{n}}}\} \]

Observe a hit

\[HAND_{\text{cold}} \]

\[HAND_{\text{test}} \]

\[HAND_{\text{hot}} \]
Experimental settings

• **Trace-Driven Simulation**
 - I/O traces from UMass Trace Repository
 - Synthetic trace drawn from a stack depth distribution
 - Cache size varies, & shadow entry number = cache entry number

• **Comparative Study on Hit Ratio**
 - CLOCK-Pro
 - CAR
 - CLOCK-Pro+
Experimental results

<table>
<thead>
<tr>
<th>Trace (cache size)</th>
<th>CLOCK-Pro</th>
<th>CAR</th>
<th>CLOCK-Pro+</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSearch1 (131072)</td>
<td>13.10%</td>
<td>8.32%</td>
<td>12.96%</td>
</tr>
<tr>
<td>WebSearch1 (262144)</td>
<td>24.91%</td>
<td>14.90%</td>
<td>24.80%</td>
</tr>
<tr>
<td>WebSearch1 (524288)</td>
<td>40.36%</td>
<td>32.78%</td>
<td>41.66%</td>
</tr>
<tr>
<td>WebSearch2 (262144)</td>
<td>29.80%</td>
<td>26.94%</td>
<td>29.64%</td>
</tr>
<tr>
<td>WebSearch2 (524288)</td>
<td>48.35%</td>
<td>41.72%</td>
<td>48.50%</td>
</tr>
<tr>
<td>WebSearch3 (262144)</td>
<td>29.66%</td>
<td>26.68%</td>
<td>29.52%</td>
</tr>
<tr>
<td>WebSearch3 (524288)</td>
<td>48.21%</td>
<td>41.40%</td>
<td>48.41%</td>
</tr>
<tr>
<td>Financial1 (512)</td>
<td>17.78%</td>
<td>23.17%</td>
<td>22.69%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>20.62%</td>
<td>26.02%</td>
<td>25.77%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>24.16%</td>
<td>29.38%</td>
<td>29.15%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>27.58%</td>
<td>32.61%</td>
<td>32.35%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>31.31%</td>
<td>35.72%</td>
<td>35.65%</td>
</tr>
<tr>
<td>Financial1 (16384)</td>
<td>34.33%</td>
<td>38.35%</td>
<td>38.31%</td>
</tr>
<tr>
<td>SDD (256)</td>
<td>17.10%</td>
<td>20.40%</td>
<td>19.34%</td>
</tr>
<tr>
<td>SDD (512)</td>
<td>31.60%</td>
<td>36.75%</td>
<td>35.06%</td>
</tr>
</tbody>
</table>
Experimental results

<table>
<thead>
<tr>
<th>Trace (cache size)</th>
<th>CLOCK-Pro</th>
<th>CAR</th>
<th>CLOCK-Pro+</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSearch1 (131072)</td>
<td>13.10%</td>
<td>8.32%</td>
<td>12.96%</td>
</tr>
<tr>
<td>WebSearch1 (262144)</td>
<td>24.91%</td>
<td>14.90%</td>
<td>24.80%</td>
</tr>
<tr>
<td>WebSearch1 (524288)</td>
<td>40.36%</td>
<td>32.78%</td>
<td>41.66%</td>
</tr>
<tr>
<td>WebSearch2 (262144)</td>
<td>29.80%</td>
<td>26.94%</td>
<td>29.64%</td>
</tr>
<tr>
<td>WebSearch2 (524288)</td>
<td>48.35%</td>
<td>41.72%</td>
<td>48.50%</td>
</tr>
<tr>
<td>WebSearch3 (262144)</td>
<td>29.66%</td>
<td>26.68%</td>
<td>29.52%</td>
</tr>
<tr>
<td>WebSearch3 (524288)</td>
<td>48.21%</td>
<td>41.40%</td>
<td>48.41%</td>
</tr>
<tr>
<td>Financial1 (512)</td>
<td>17.78%</td>
<td>23.17%</td>
<td>22.69%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>20.62%</td>
<td>26.02%</td>
<td>25.77%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>24.16%</td>
<td>29.38%</td>
<td>29.15%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>27.58%</td>
<td>32.61%</td>
<td>32.35%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>31.31%</td>
<td>35.72%</td>
<td>35.65%</td>
</tr>
<tr>
<td>Financial1 (512)</td>
<td>17.10%</td>
<td>20.40%</td>
<td>19.34%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>20.62%</td>
<td>26.02%</td>
<td>25.77%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>24.16%</td>
<td>29.38%</td>
<td>29.15%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>27.58%</td>
<td>32.61%</td>
<td>32.35%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>31.31%</td>
<td>35.72%</td>
<td>35.65%</td>
</tr>
<tr>
<td>Financial1 (512)</td>
<td>17.10%</td>
<td>20.40%</td>
<td>19.34%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>20.62%</td>
<td>26.02%</td>
<td>25.77%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>24.16%</td>
<td>29.38%</td>
<td>29.15%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>27.58%</td>
<td>32.61%</td>
<td>32.35%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>31.31%</td>
<td>35.72%</td>
<td>35.65%</td>
</tr>
</tbody>
</table>

Overcome CLOCK-Pro’s weaknesses, bringing its performance close to CAR

CLOCK-Pro+ performs close to the winner between the two.
Conclusion

• **Novel Improvement to CLOCK-Pro’s Adaptation**
 - Borrowing idea from CAR
 - Utility-driven adaptation of cache space allocation

• **CLOCK-Pro+**
 - Enjoy the strengths of CLOCK-Pro & CAR
 - Overcome the weaknesses of CLOCK-Pro & CAR
 - Perform consistently close to the winner between the two
Ablation Study

Sometimes CLOCK-Pro improves the performance.

<table>
<thead>
<tr>
<th>Trace (cache size)</th>
<th>CLOCK-LIRS1</th>
<th>CLOCK-Pro</th>
<th>CLOCK-Pro+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial1 (512)</td>
<td>15.80%</td>
<td>17.78%</td>
<td>22.69%</td>
</tr>
<tr>
<td>Financial1 (1024)</td>
<td>19.42%</td>
<td>20.62%</td>
<td>25.77%</td>
</tr>
<tr>
<td>Financial1 (2048)</td>
<td>25.36%</td>
<td>24.16%</td>
<td>29.15%</td>
</tr>
<tr>
<td>Financial1 (4096)</td>
<td>30.51%</td>
<td>27.58%</td>
<td>32.35%</td>
</tr>
<tr>
<td>Financial1 (8192)</td>
<td>34.24%</td>
<td>31.31%</td>
<td>35.65%</td>
</tr>
<tr>
<td>Financial1 (16384)</td>
<td>37.08%</td>
<td>34.33%</td>
<td>38.31%</td>
</tr>
<tr>
<td>SDD (256)</td>
<td>17.00%</td>
<td>17.10%</td>
<td>19.34%</td>
</tr>
<tr>
<td>SDD (512)</td>
<td>30.95%</td>
<td>31.60%</td>
<td>35.06%</td>
</tr>
<tr>
<td>SDD (1024)</td>
<td>51.55%</td>
<td>58.08%</td>
<td>58.07%</td>
</tr>
</tbody>
</table>

1 CLOCK-Pro w/o adaptation

CLOCK-Pro performs unstably but CLOCK-Pro+ performs consistently.

Sometimes it does not.

CLOCK-Pro+ consistently improves the performance.
Case Study: Financial1 (4096)

CLOCK-Pro: 382,543 non-resident cold page accesses, 111,244 resident cold page hits tracked, but 3,143,452 test pages expired;
CLOCK-Pro+: 102,804 non-resident cold page accesses & 3,780 demoted page hits
Full Results: WebSearch1 & WebSearch2

- CLOCK
- CAR
- CLOCK-Pro
- CLOCK-Pro+

Hit ratio vs. # of pages cached

12th ACM International Systems & Storage Conference (SYSTOR 2019)
Full Results: WebSearch3 & Financial1
Full Results: Financial2 & SDD