
Storm: a fast transactional dataplane
for remote data structures

12th ACM International Systems and Storage Conference (SYSTOR) 

Stanko Novakovic     Yizhou Shan    Aasheesh Kolli Michael Cui

Yiying Zhang    Haggai Eran    Boris Pismenny Liran Liss Michael Wei

Dan Tsafrir Marcos Aguilera



• Initiate transfer, hardware executes, async. poll for completions

• Infiniband (IB): specialized network stack for RDMA
• Fully implemented in hardware (PCIe-based adapters)  →

• Also: IB transport on top of IP and lossless Ethernet

• Key benefits: 
1. one-sided access 

2. user-level w/ minimal instr. footprint

What is Remote Direct Memory Access (RDMA)?

2



Remote data structures

• Hash tables, graphs, trees, queues, etc
• Fine-grain accesses

• High fan-out

• Pointer-linked 

• Transactional access

• Throughput (IOPS) bound

• Latency Service Level Objective (SLO)

• Other (perhaps less interesting) use cases: analytics, VM migration
• Bulk transfers, bandwidth-bound

3



What are common concerns?

1. Scalability: network state kept in limited hardware resources

2. Round-trips: pointer-linked data structures

4

core

Ca cheCP U

R Q

S Q

DR AM

rNIC

PCI/DMA

CQ

ca c he

Infiniba nd or ETH

Protection

Addr.  trans la tion

DDIO

Connection state

WQEs



What are common concerns?

1. Scalability: network state kept in limited hardware resources
• FARM: Use locks to share QP connections (Dragojevic’14)

• FaSST/eRPC: Don’t use connections (Kalia’19)

• LITE: Enforce protection in kernel (Tsai’17)

2. Round-trips: pointer-linked data structures
• FARM: Use Hopscotch algorithm, one RTT common case

• FaSST/eRPC: Leverage RPCs rather than one-sided reads

5



Outline

• Problem statement

• Key insights

• Storm design

• Results

6



Key insights (1/2)

• Hardware has gotten much better!!! 
• ConnectX-4/5 (CX4/5) vs. ConnectX-3 (CX3) 

• 40M IOPS on CX4 → 4x higher than CX3

• Scales up to 64 machines → on CX3 IOPS collapses for >10 machines

• CX4 achieves 10M IOPS when zero cache hits →max IOPS for uncontended CX3

• Break-even point with datagram send/recv currently at ~4k connections

• Possible further improvements with ConnectX-6

• How is HW getting better?
• More concurrency, better prefetching, larger caches, etc

7



Key insights (2/2)

• FARM: 
• Locks degrade throughput unnecessarily 

• Large buckets (due to larger keys) wastes throughput

• FaSST/eRPC:
• Two-sided doesn’t allow for maximum full-duplex throughput

• Especially for requests larger than a cache line (no inlining)

• Onloaded congestion control adds overhead

• LITE:
• Kernel adds overhead (fine-grain accesses)

• No support for async. operations

8



Our approach / Storm design principles
1. Use connections but minimal count

• Lock-free QP sharing if really necessary
• Offloaded congestion control and retransmissions

2. Use one-sided reads whenever possible
• First one-sided, then RPC (one-two-sided)
• RPC also implemented using one-sided writes

3. Leverage abundant memory
• Cache metadata and/or reduce collisions in hash tables 

4. Minimize translation & protection state
• Use contiguous physical allocation

5. And don’t forget to deploy on new hardware!!!

9



10

Storm dataplane

Data structure

impl. & metadata

MEM

RR

Division of responsibilities: 
• Storm DP only understands RDMA connections and memory regions
• Data structure understands data layout and implements metadata caching

Event 

loop

RPC

CPU

Storm dataplane

Data structure

impl. & metadata

MEM CPU rNIC rNICHW

SW

Storm design

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt



11

Storm dataplane

MEM CPU

Storm dataplane

MEM CPU rNIC rNIC

fail success

HW

SW

Data structure

impl. & metadata

Data structure

impl. & metadata

op()

ev_loop()

ev_loop()

Two-sided operations

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

success1 23



12

Storm dataplane

MEM CPU

Storm dataplane

MEM CPU rNIC rNIC

success

HW

SW

Data structure

impl. & metadata

Data structure

impl. & metadata

op()

ev_loop()

One-sided operations

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

success1

2

3



13

Storm dataplane

MEM CPU

Storm dataplane

MEM CPU rNIC rNIC

success

HW

SW

Data structure

impl. & metadata

Data structure

impl. & metadata

op()

ev_loop()

One-two-sided operations

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

fail1

2

3



14

Storm dataplane

MEM CPU

Storm dataplane

MEM CPU rNIC rNIC

fail success

HW

SW

Data structure

impl. & metadata

Data structure

impl. & metadata

op()

ev_loop()

ev_loop()

One-two-sided operations

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

success3 45



15

Storm dataplane

MEM CPU

Storm dataplane

MEM CPU rNIC rNICHW

SW

TX TX

Data structure

impl. & metadata

Data structure

impl. & metadata

Distributed transactions

Support for concurrent data structures using transactions

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt

RR

Event 

loop

RPC

QP & 

buffer 

mngmnt



Data structure API (three callbacks)

• RPC handler
• Processing two-sided communication

• Implements complex paths, such as acquiring locks and commits

• Lookup start
• Check if address is known (cached) or we can guess

• If yes, leverage RDMA read

• Lookup end
• Check if data is valid and cache for future use

16



Storm implementation & exp. setup

• 13k LOC of C++, w/o MICA modifications [Lim’14]

• HPC cluster w/ 32 Dell machines
• High-speed Infiniband network (100Gbps)
• Mellanox ConnectX-4 – similar in perf to CX5
• Emulation of 3-4x larger clusters possible on Storm

• Benchmarks:
• Key-value transactional micro-benchmark
• Telecommunication Application Transaction Processing (TATP)

17



Outline

• Problem statement

• Key insights

• Storm design

• Results

18



Baselines

• Emulated FARM (modified: Lock-free_FaRM)
• No connection sharing, 1KB “neighborhoods” 

• eRPC
• With and without active congestion control

• LITE (modified: Async_LITE)
• Added support for asynchronous operations

19



Storm results 
• Single-lookup workload

• 128B KV pairs, 100M items, 20 threads per mn

0

10

20

30

40

50

4 8 12 16 20 24 28 32

P
e

r-
m

n
lo

o
k
u

p
s
 /

 u
s
e

c

Number of machines

Storm (cache)

20



Storm results 
• Single-lookup workload

• 128B KV pairs, 100M items, 20 threads per mn

0

10

20

30

40

50

4 8 12 16 20 24 28 32

P
e

r-
m

n
lo

o
k
u

p
s
 /

 u
s
e

c

Number of machines

Storm (cache) Storm (oversub)

0

10

20

30

40

50

4 8 12 16

P
e

r-
m

n
lo

o
k
u

p
s
 /

 u
s
e

c

Number of physical machines

Storm(oversub) eRPC (w/o CC)
eRPC Lock-free FARM
Async_LITE (projected)

21

one-two-sided operations 

• TATP: 11.8 million per node with Storm (oversub)



Does Storm scale well?

• Storm scales well up to 64mn

• Reduce thread count by 2x
• 2x fewer threads → 2x fewer QPs

• Do we need more than 10 threads?
• Lock-free QP sharing 0

10

20

30

40

50

32 64 96 128P
e

r-
m

n
lo

o
k
u

p
s
 /

 u
s
e

c

Number of emulated machines

Storm(cache)-20x Storm(cache)-10x

22



Conclusion & future work

23

• RDMA datacenter users should get a hardware upgrade
• More scalable hardware available
• Take advantage of one-sided primitives

• Leverage caching and oversubscription (in hash tables)
• One-sided read in the common case

• Ongoing research threads:
• Designing “far” memory data structures (HotOS’19)
• Memory allocator for repurposing unused memory
• Lock-free mechanisms for QP sharing


