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• Initiate transfer, hardware executes, async. poll for completions

• Infiniband (IB): specialized network stack for RDMA
• Fully implemented in hardware (PCIe-based adapters)  →

• Also: IB transport on top of IP and lossless Ethernet

• Key benefits: 
1. one-sided access 

2. user-level w/ minimal instr. footprint

What is Remote Direct Memory Access (RDMA)?
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Remote data structures

• Hash tables, graphs, trees, queues, etc
• Fine-grain accesses

• High fan-out

• Pointer-linked 

• Transactional access

• Throughput (IOPS) bound

• Latency Service Level Objective (SLO)

• Other (perhaps less interesting) use cases: analytics, VM migration
• Bulk transfers, bandwidth-bound
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What are common concerns?

1. Scalability: network state kept in limited hardware resources

2. Round-trips: pointer-linked data structures
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What are common concerns?

1. Scalability: network state kept in limited hardware resources
• FARM: Use locks to share QP connections (Dragojevic’14)

• FaSST/eRPC: Don’t use connections (Kalia’19)

• LITE: Enforce protection in kernel (Tsai’17)

2. Round-trips: pointer-linked data structures
• FARM: Use Hopscotch algorithm, one RTT common case

• FaSST/eRPC: Leverage RPCs rather than one-sided reads
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Outline

• Problem statement

• Key insights

• Storm design

• Results
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Key insights (1/2)

• Hardware has gotten much better!!! 
• ConnectX-4/5 (CX4/5) vs. ConnectX-3 (CX3) 

• 40M IOPS on CX4 → 4x higher than CX3

• Scales up to 64 machines → on CX3 IOPS collapses for >10 machines

• CX4 achieves 10M IOPS when zero cache hits →max IOPS for uncontended CX3

• Break-even point with datagram send/recv currently at ~4k connections

• Possible further improvements with ConnectX-6

• How is HW getting better?
• More concurrency, better prefetching, larger caches, etc
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Key insights (2/2)

• FARM: 
• Locks degrade throughput unnecessarily 

• Large buckets (due to larger keys) wastes throughput

• FaSST/eRPC:
• Two-sided doesn’t allow for maximum full-duplex throughput

• Especially for requests larger than a cache line (no inlining)

• Onloaded congestion control adds overhead

• LITE:
• Kernel adds overhead (fine-grain accesses)

• No support for async. operations
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Our approach / Storm design principles
1. Use connections but minimal count

• Lock-free QP sharing if really necessary
• Offloaded congestion control and retransmissions

2. Use one-sided reads whenever possible
• First one-sided, then RPC (one-two-sided)
• RPC also implemented using one-sided writes

3. Leverage abundant memory
• Cache metadata and/or reduce collisions in hash tables 

4. Minimize translation & protection state
• Use contiguous physical allocation

5. And don’t forget to deploy on new hardware!!!
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Data structure API (three callbacks)

• RPC handler
• Processing two-sided communication

• Implements complex paths, such as acquiring locks and commits

• Lookup start
• Check if address is known (cached) or we can guess

• If yes, leverage RDMA read

• Lookup end
• Check if data is valid and cache for future use
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Storm implementation & exp. setup

• 13k LOC of C++, w/o MICA modifications [Lim’14]

• HPC cluster w/ 32 Dell machines
• High-speed Infiniband network (100Gbps)
• Mellanox ConnectX-4 – similar in perf to CX5
• Emulation of 3-4x larger clusters possible on Storm

• Benchmarks:
• Key-value transactional micro-benchmark
• Telecommunication Application Transaction Processing (TATP)
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Outline

• Problem statement

• Key insights

• Storm design

• Results
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Baselines

• Emulated FARM (modified: Lock-free_FaRM)
• No connection sharing, 1KB “neighborhoods” 

• eRPC
• With and without active congestion control

• LITE (modified: Async_LITE)
• Added support for asynchronous operations
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Storm results 
• Single-lookup workload

• 128B KV pairs, 100M items, 20 threads per mn
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Storm results 
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one-two-sided operations 

• TATP: 11.8 million per node with Storm (oversub)



Does Storm scale well?

• Storm scales well up to 64mn

• Reduce thread count by 2x
• 2x fewer threads → 2x fewer QPs

• Do we need more than 10 threads?
• Lock-free QP sharing 0
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Conclusion & future work
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• RDMA datacenter users should get a hardware upgrade
• More scalable hardware available
• Take advantage of one-sided primitives

• Leverage caching and oversubscription (in hash tables)
• One-sided read in the common case

• Ongoing research threads:
• Designing “far” memory data structures (HotOS’19)
• Memory allocator for repurposing unused memory
• Lock-free mechanisms for QP sharing


