KIT

Karlsruhe Institute of Technology

Automatic Core Specialization for AVX-512
Applications

Mathias Gottschlag, Peter Brantsch, Frank Bellosa | October 13, 2020

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

KIT — The Research University in the Helmholtz Association

http://www.kit.edu

Effects of AVX-512 ﬂ(“‘

a AVX-512: SIMD instructions for data parallelism a bo ‘o

aj o Cy

m AVX-512 speeds up Poly1305 MAC a + b | |o
= web server slowed down by 10% if AVX-512 is used a

3 bs C3

a AVX-512 can speed up machine learning by up to 2.2x
= Applications running in parallel run 10% slower

a This talk: How to prevent this slowdown?

Vlad Krasnov: On the dangers of Intel's frequency scaling. Cloudflare, Nov. 2017
Aubrey Li: Core scheduling: Fixing when fast instructions go slow. LPC’19, Sep. 2019

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 2/9

AVX Frequency Reduction ﬂ(“‘

m Complex SIMD instructions cause momentary high power consumption
= Result: High power variability

a Power is limited (heat, voltage drops)
= Different max. frequencies possible depending on instructions

a Intel: Particularly low frequency for AVX-512 code!

Intel Xeon Processor Scalable Family — Specification Update. June 2020

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 3/9

AVX-512 Overhead

a Frequency reduction affects non-AVX-512 code

Thread | | AVX-512 same core
Code |AVX-512 Non-AVX Thread Non-AVX
A head overhead
Freq. s Freq.h l_
ti?ne ti?ne

a Local speedup, global slowdown?

= Solution to prevent slowdown at runtime

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications

4/9

Core Specialization ﬂ(“

m |dea: Spatial separation
“non-AVX core” (fast) | “AVX-512 core” (slow)

non-AVX task AVX-512 task
non-AVX task AVX-512 task

a Result: Only “AVX-512 cores” slowed down
= Reduced frequency impact

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 5/9

Implementation ﬂ(“

m Categorization of tasks

AVX-512 instruction (trapped)

Non-AVX task AVX-512 task

system call

m Non-AVX tasks allowed on AVX-512 cores
m But: Prioritize AVX-512 tasks

m More details in the paper.

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 6/9

Evaluation

m CPU time for heterogeneous workloads
a Usage of AVX-512 configurable

Karlstuhe Isttute of Technology

Two-program workloads

1.5 (Parsec + x265) |

CPU time
(normalized)

T
!
|
|
|
|
[~ |
|
|
|
|
!
|

; |

0.5 H
0

< \e‘”’m«\@,\e o o G o

O
R &

a Original: 11.3% overhead due to AVX-512
a Our approach: 3.4%

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications

I No AVX2/AVX-512
AVX-512 — Baseline
11 AVX-512 — Core Specialization

7/9

Discussion ﬂ("‘

m Traps detect all 512-bit register accesses

a Impossible to detect “energy-intensive” instructions
a Better hardware/software interface?

a Missing: NUMA support
a Prevent migration between NUMA domains

a Missing: Automatic allocation of AVX-512 cores

a Number of cores based on load
= Future work

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 8/9

Summary

a AVX-512 slows other code down

a 10% overhead reported for several scenarios
a Impact hard to predict

a Contribution: Scheduler modification to reduce slowdown

a Core specialization
a Intercept AVX-512 instructions
a Restrict AVX-512 code to AVX-512 cores

a Evaluation: Slowdown reducted to 3.4% (was: 11.3%)

M. Gottschlag, P. Brantsch, F. Bellosa — Automatic Core Specialization for AVX-512 Applications 9/9

