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Background: Vectorized NFS
● Ideal utilization of compounding: Writing multiple files 

in one compound request
NFS Client NFS ServerApplication

5

1

SEQUENCE; PUTROOTFH; LOOKUP “etc”; GETFH; GETATTR; 
SAVEFH; OPEN “passwd”; WRITE 1800 47; CLOSE; GETFH; 
GETATTR; RESTOREFH; OPEN “group”; WRITE 878 11; 
CLOSE; GETFH; GETATTR; RESTOREFH; OPEN “shadow”; 
WRITE 1170 124; CLOSE; GETFH; GETATTR; RESTOREFH;

Status codes, file handles, and file attributes

Vectorized 
File-system 

API

vec_write(
  [‘/etc/passwd’,
   ‘/etc/group’,
   ‘/etc/shadow’
  ],
  ...
)
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Background: Vectorized NFS
● Performance evaluation: Metadata intensive workload

◆ Recursive listing, symlink, and removal
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Motivation
● NFSv4 introduces “Compound” procedure

◆ Clients can pack multiple NFS operations in one “compound”
◆ This amortizes network latency and improves I/O throughput
◆ Compounding speeds up NFS I/O by up to 2 orders of magnitude

● Challenge to client’s error handling
◆ If an operation in a compound fails

▪ NFS server only reports the error, but does not rollback
◆ If the server crashed when executing a compound

▪ Nothing will be done when it restarts
◆ Difficulty for applications to handle errors

▪ Any operation may fail, and crash may occur anytime
▪ Hard to restore to initial state for a failed large compound
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Design Overview
① Compound request reaches TCNFS server

Vectorized NFSv4 Client

Write LFH1;
LFH3;⋯⋯ 

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
… ...

Compound 
Request #23

Files in backup directory#23

Transaction Layer

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1> 
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

Original files
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② TCNFS writes the compound request into 
metadata database as a Recovery Record 
(RR)

③ TCNFS backs up data blocks of files that 
will be changed by the compound request

④ TCNFS executes the operations

⑤ TCNFS removes backup data

⑥ TCNFS removes the recovery record
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Design: Error Handling
● In case of an error…

◆ TCNFS reverses previously 
executed operations

Vectorized NFSv4 Client

Files in backup directory#23

Transaction Layer

Write LFH1;
LFH3;⋯⋯ 

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1> 
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
… ...

Compound 
Request #23

Original files
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● In case of a server crash…
◆ The recovery record will be 

present in the metadata database
◆ TCNFS will parse the recovery 

record to retrieve the failed 
compound request

◆ TCNFS reverses the partially done 
compound request
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Prototype Architecture (1)
● Lock Manager

◆ Coordinates multi-client 
conflicting access

● Backup Manager
◆ Creates and cleans up backups

● Undo Executor
◆ Reverts partially executed 

compounds due to failure
● Metadata Translator

◆ Mappings between NFS file 
handle and local file handle
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Prototype Architecture (2)
● Transaction Logger

◆ Creates and cleans up the 
Recovery Records

● Offline Undo Executor
◆ Reverts partially executed 

compounds due to server crash
● CoW-enabled File System

◆ Use CoW to create backups to 
reduce I/O overhead

● SSD with Power Protection
◆ Ensures endurance and reduces

the latency of fsync()
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Experimental Setup
● 3 identical machines, 1 Server + 2 Clients

◆ Each client machine runs 4 KVM virtual machines
◆ Each VM runs Ubuntu 18.04 and one vNFS/NFSv4 client

● CPU: Intel Xeon X5650
● RAM: 64GB
● Storage

◆ 147GB hard drive for system disk (ext4)
◆ 200GB Intel DC-S3700 SSD for server’s TC-NFS backend storage (XFS)

● Network
◆ 10GbE NIC connected via 10GbE switch
◆ average RTT = 0.2ms

● OS: Ubuntu 18.04 with Linux Kernel v4.15
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Micro-Benchmark: Writefiles
● Writefiles (Multi-client)

◆ Write 1,000 fixed-size files from 1K to 16M in parallel
◆ 1~8 clients, 0.2ms network latency

Large files (⩾ 256K)
4.1~20% Overhead

Small files (⩽ 128K)
36%~26⨉ Overhead
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Explore the Bottleneck
● Local “Writefiles” Workload Simulation

◆ Concurrently writes 1,000 equal-size files locally to the SSD using 
1~8 threads repeatedly for 30s

◆ fsync() is called after writing each file to simulate the behavior 
of the NFSv4 server (NFS-Ganesha)

◆ Two types of workload
▪ Interleaving-backup: Create backup for the target file before 

each write() operation using Copy-on-Write cloning
▪ No-backup: Only do write() and fsync(), no backups
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Exploring the Bottleneck
● Solid lines: No-backup; Dashed lines: Interleaving-backup
● No-backup (NB) workload scales well with number of threads
● Interleaving-backup (IB) workload does not scale or become worse
● This reproduces the bad scalability of TC-NFS Speedup Ratio at 8Th

NB: 2.0~4.6⨉

Speedup Ratio at 8Th
IB: 0.36~0.95⨉
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Macro-Benchmark: Coreutils
● Test target: Linux kernel 4.20.7 source tree

◆ 62,447 regular files (Average size: 14.9 KB)
◆ 4,148 directories (Average 15 children per directory

● Single-client, varied network latency between 0.2ms to 30.2ms
● Baseline: vNFS Client + Vanilla NFSv4 Server; Measured total runtime

Symlink: 8.8~50% Overhead

Removal: 7.9~42% Overhead

Copy: 7.9~35% Overhead

Listing: 1.1~18% Overhead

⩽10%

35~50%
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Conclusions
● Provides transaction support for NFSv4 compounds 

◆ Makes error handling easier for applications
◆ Currently supports the following operations: OPEN, CREATE, 

WRITE, LINK, REMOVE and simple RENAME (non-directories)
● Introduces modest overhead to single-client workloads 

and real-world applications
◆ Considering the improvement vNFS provides, vNFS Client + 

TC-NFS is still much faster than traditional NFSv4 system
● Higher overhead in multi-client workloads

◆ This is because CoW cloning + synced writes are slow on XFS
◆ Will be resolved once the CoW feature is optimized
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Q&A
Paper: https://www.fsl.cs.sunysb.edu/docs/nfs4perf/tcnfs-systor2020.pdf

Project Source Code: https://github.com/sbu-fsl/fsl-tc-server


