
Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 1October 14, 2020

13th ACM International Systems and Storage
Conference (SYSTOR 2020)

Wei Su1, Akshay Aurora1, Ming Chen2, Erez Zadok1

1Stony Brook University; 2Google

Supporting Transactions
for Bulk NFSv4 Compounds

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 2October 14, 2020

Background: Vectorized NFS
● Ideal utilization of compounding: Writing multiple files

in one compound request
NFS Client NFS ServerApplication

5

1

SEQUENCE; PUTROOTFH; LOOKUP “etc”; GETFH; GETATTR;
SAVEFH; OPEN “passwd”; WRITE 1800 47; CLOSE; GETFH;
GETATTR; RESTOREFH; OPEN “group”; WRITE 878 11;
CLOSE; GETFH; GETATTR; RESTOREFH; OPEN “shadow”;
WRITE 1170 124; CLOSE; GETFH; GETATTR; RESTOREFH;

Status codes, file handles, and file attributes

Vectorized
File-system

API

vec_write(
 [‘/etc/passwd’,
 ‘/etc/group’,
 ‘/etc/shadow’
],
 ...
)

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 3October 14, 2020

Background: Vectorized NFS
● Performance evaluation: Metadata intensive workload

◆ Recursive listing, symlink, and removal

16~259⨉

LAN WAN

7~106⨉

2.5~12⨉

2.5⨉

259⨉

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 4October 14, 2020

Motivation
● NFSv4 introduces “Compound” procedure

◆ Clients can pack multiple NFS operations in one “compound”
◆ This amortizes network latency and improves I/O throughput
◆ Compounding speeds up NFS I/O by up to 2 orders of magnitude

● Challenge to client’s error handling
◆ If an operation in a compound fails

▪ NFS server only reports the error, but does not rollback
◆ If the server crashed when executing a compound

▪ Nothing will be done when it restarts
◆ Difficulty for applications to handle errors

▪ Any operation may fail, and crash may occur anytime
▪ Hard to restore to initial state for a failed large compound

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 5October 14, 2020

Design Overview
① Compound request reaches TCNFS server

Vectorized NFSv4 Client

Write LFH1;
LFH3;⋯⋯

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
… ...

Compound
Request #23

Files in backup directory#23

Transaction Layer

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1>
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

Original files

TC
N

FS
 S

er
ve

r

Metadata Database

Clone

①

②

③

④

⑤

⑥

② TCNFS writes the compound request into
metadata database as a Recovery Record
(RR)

③ TCNFS backs up data blocks of files that
will be changed by the compound request

④ TCNFS executes the operations

⑤ TCNFS removes backup data

⑥ TCNFS removes the recovery record

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 6October 14, 2020

Design: Error Handling
● In case of an error…

◆ TCNFS reverses previously
executed operations

Vectorized NFSv4 Client

Files in backup directory#23

Transaction Layer

Write LFH1;
LFH3;⋯⋯

<LFH1,NFH1>
<LFH3,NFH2>
…
<NFH1,LFH1>
<NFH1, Path1>
<NFH2,LFH3>
<NFH2, Path2>
…
<RR#23,...>

PUTFH NFH1; WRITE;
PUTFH NFH2; WRITE;
… ...

Compound
Request #23

Original files

TC
N

FS
 S

er
ve

r

Metadata Database

Clone

①

②

③

④

⑤

⑥

● In case of a server crash…
◆ The recovery record will be

present in the metadata database
◆ TCNFS will parse the recovery

record to retrieve the failed
compound request

◆ TCNFS reverses the partially done
compound request

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 7October 14, 2020

Prototype Architecture (1)
● Lock Manager

◆ Coordinates multi-client
conflicting access

● Backup Manager
◆ Creates and cleans up backups

● Undo Executor
◆ Reverts partially executed

compounds due to failure
● Metadata Translator

◆ Mappings between NFS file
handle and local file handle

Metadata
Database

 RPC + Protocol Layer (NFS v4)

MDCACHE: Metadata Cache
File System Abstraction Layer

TC-NFS Transaction Layer

VFS: File System Wrapper

Backup
Manager

Undo
Executor

Metadata
Translator

Offline
Undo Executor

Transaction
Logger

Virtual File System
CoW-enabled File System: XFS, btrfsNetworking

(TCP/IP)

User
Kernel

System Call/ioctl

NFS Ganesha

Ve
ct

or
iz

ed
 N

FS
v4

 A
PI

Lock Manager

SSD with Power-loss Protection

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 8October 14, 2020

Prototype Architecture (2)
● Transaction Logger

◆ Creates and cleans up the
Recovery Records

● Offline Undo Executor
◆ Reverts partially executed

compounds due to server crash
● CoW-enabled File System

◆ Use CoW to create backups to
reduce I/O overhead

● SSD with Power Protection
◆ Ensures endurance and reduces

the latency of fsync()

Metadata
Database

 RPC + Protocol Layer (NFS v4)

MDCACHE: Metadata Cache
File System Abstraction Layer

TC-NFS Transaction Layer

VFS: File System Wrapper

Backup
Manager

Undo
Executor

Metadata
Translator

Offline
Undo Executor

Transaction
Logger

Virtual File System
CoW-enabled File System: XFS, btrfsNetworking

(TCP/IP)

User
Kernel

System Call/ioctl

NFS Ganesha

Ve
ct

or
iz

ed
 N

FS
v4

 A
PI

Lock Manager

SSD with Power-loss Protection

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 9October 14, 2020

Experimental Setup
● 3 identical machines, 1 Server + 2 Clients

◆ Each client machine runs 4 KVM virtual machines
◆ Each VM runs Ubuntu 18.04 and one vNFS/NFSv4 client

● CPU: Intel Xeon X5650
● RAM: 64GB
● Storage

◆ 147GB hard drive for system disk (ext4)
◆ 200GB Intel DC-S3700 SSD for server’s TC-NFS backend storage (XFS)

● Network
◆ 10GbE NIC connected via 10GbE switch
◆ average RTT = 0.2ms

● OS: Ubuntu 18.04 with Linux Kernel v4.15

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 10October 14, 2020

Micro-Benchmark: Writefiles
● Writefiles (Multi-client)

◆ Write 1,000 fixed-size files from 1K to 16M in parallel
◆ 1~8 clients, 0.2ms network latency

Large files (⩾ 256K)
4.1~20% Overhead

Small files (⩽ 128K)
36%~26⨉ Overhead

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 11October 14, 2020

Explore the Bottleneck
● Local “Writefiles” Workload Simulation

◆ Concurrently writes 1,000 equal-size files locally to the SSD using
1~8 threads repeatedly for 30s

◆ fsync() is called after writing each file to simulate the behavior
of the NFSv4 server (NFS-Ganesha)

◆ Two types of workload
▪ Interleaving-backup: Create backup for the target file before

each write() operation using Copy-on-Write cloning
▪ No-backup: Only do write() and fsync(), no backups

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 12October 14, 2020

Exploring the Bottleneck
● Solid lines: No-backup; Dashed lines: Interleaving-backup
● No-backup (NB) workload scales well with number of threads
● Interleaving-backup (IB) workload does not scale or become worse
● This reproduces the bad scalability of TC-NFS Speedup Ratio at 8Th

NB: 2.0~4.6⨉

Speedup Ratio at 8Th
IB: 0.36~0.95⨉

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 13October 14, 2020

Macro-Benchmark: Coreutils
● Test target: Linux kernel 4.20.7 source tree

◆ 62,447 regular files (Average size: 14.9 KB)
◆ 4,148 directories (Average 15 children per directory

● Single-client, varied network latency between 0.2ms to 30.2ms
● Baseline: vNFS Client + Vanilla NFSv4 Server; Measured total runtime

Symlink: 8.8~50% Overhead

Removal: 7.9~42% Overhead

Copy: 7.9~35% Overhead

Listing: 1.1~18% Overhead

⩽10%

35~50%

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 14October 14, 2020

Conclusions
● Provides transaction support for NFSv4 compounds

◆ Makes error handling easier for applications
◆ Currently supports the following operations: OPEN, CREATE,

WRITE, LINK, REMOVE and simple RENAME (non-directories)
● Introduces modest overhead to single-client workloads

and real-world applications
◆ Considering the improvement vNFS provides, vNFS Client +

TC-NFS is still much faster than traditional NFSv4 system
● Higher overhead in multi-client workloads

◆ This is because CoW cloning + synced writes are slow on XFS
◆ Will be resolved once the CoW feature is optimized

Supporting Transactions for Bulk NFSv4 Compounds (ACM SYSTOR 2020) 15October 14, 2020

13th ACM International Systems and Storage
Conference (SYSTOR 2020)

Wei Su1, Akshay Aurora1, Ming Chen2, Erez Zadok1

1Stony Brook University; 2Google

Supporting Transactions
for Bulk NFSv4 Compounds

Q&A
Paper: https://www.fsl.cs.sunysb.edu/docs/nfs4perf/tcnfs-systor2020.pdf

Project Source Code: https://github.com/sbu-fsl/fsl-tc-server

