
1

Storage Virtualization using
a Block-Device File System

S. Faibish, S. Fridella, P. Bixby, U. Gupta – EMC

SYSTOR 2007, October 29, Haifa, Israel

2

Storage Virtualization; what is it?

Automatic mapping of
pieces of information to
the ideal storage devices
in a transparent and
durable manner

Virtualizes Storage
Logical Units (LUNs) as
files in a File System

FFS File System

vol1
vol2

vol3

vol1 vol2 vol3

v_lun_0

v_lun_0_ver_1

v_lun_0_ver_2

vlun

3

Storage Virtualization; what is it? – (cont.)

Achieve features that are not characteristic to typical files in
file systems but specific to LUs such as:

– Thin Provisioning for optimal capacity utilization
– Location Independence and multiple copies for protection
– Dynamic Allocation
– Dynamic Re-mapping for Snapshots
– Data location based on SLO for performance and reliability
– Better power utilization efficiency

Use techniques such as file versioning

Best achieved using special Block-Device File System – a
modified version of FFS

4

Why Use File Systems?

Can achieve different SLO for files data and metadata

SLO is related to information security, reliability and
performance

Information is stored in files making the file system the
place to build SLO

But traditional file systems can only achieve limited SLO:
– UNIX like file systems: ext3, sVfs and FFS
– Log structured file systems: LFS and WAFL
– Windows based file systems: NTFS

What about ZFS? Does it virtualize storage?

5

File System Historical Background

Original file systems design assumptions
– Disks are good at bulk sequential transfers of data.
– Disks perform poorly when forced to seek.
– Logically contiguous disk addresses are likely to be physically

contiguous.

Managing data is easy; managing metadata is hard
– Meta-data objects are small, fragmented, and frequently accessed.
– Meta-data operations have a very high seek-to-byte-of-data

transferred ratio
– Have generally poor performance if compared to data operations.

Special techniques were used to manipulate the metadata
– Collocate inodes close to directories and file data to reduce seeks
– Organize data in fixed structures on disk such as Cylinder Groups

(FFS) or Segments (LFS)
– Use soft updates and explicit grouping for ordering metadata and data

6

What File System?

Modern file systems don’t rely on metadata and data co-
locality; traditional approach is less beneficial

Old/New file system concept based on the Berkeley Fast
File System (FFS) splitting metadata and data because:

– FFS significantly improved the Unix file system performance by
spreading file system metadata across the disk.

– The metadata is “stuff” used to control and maintain data, but not
the data itself.

– By grouping file data with its associated metadata, reference locality
improved dramatically.

– The specific layout on the disk was based on the physical
characteristics of the disk and efforts were made to store related
information the same physical disk cylinders.

FFS allows easy implementation of file versioning

7

Many kinds of Metadata

File system metadata and other kinds of metadata

UxFS (EMC version of FFS) has both fixed and dynamic
metadata using logical disks organized in Cylinder Groups

Fixed Metadata – can be easily separated
– Superblock and alternate superblocks
– File inodes
– Free/In-use bitmaps for block and inodes
– Cylinder group headers with CG info including the bitmaps

Dynamic Metadata
– Indirect blocks – needs structural change
– Directory blocks – can be easier to separate (ST, OSD, OSS)

Other storage metadata
– Parity and checksums
– Encryption keys

8

Normal UxFS Layout on Disk

fixed metadata

data blocks and
dynamic metadata

Each of the cylinder groups are
(generally) the same size and
shape. This simplifies extending
the file system.

9

Normal UxFS Layout – w/ Indirect and Directory Blocks

metadata (fixed) data blocks

indirect blocks directory blocks

unused blocks

10

Why Separate Data and Metadata?

Support different SLOs for data and metadata
– Meta-data on fast storage for metadata intensive workloads
– Encrypt file data without affecting metadata
– Apply single-instancing to file data without affecting metadata

Upgrade, modify, or reformat metadata more easily

Support very large contiguous allocation for files
– Improve sequential allocation of files
– Consume existing data into file system as a file

Support different block sizes for data and metadata
– Small data block size (1k) for email apps
– Large data block size (64k) for streaming apps
– Metadata block size need not change

11

Block-Device File System (UbFS) Layout on Disk

Dynamic Metadata (Indirect blocks, directory blocks)

Data

Metadata Space Data Space
M/D split

Fixed Metadata

(Inodes, CGs)

12

Block-Device File System (UbFS) Layout on Disk (cont.)

metadata (fixed) data blocks

indirect blocks directory blocks

unused metadata blocks

unused data blocks

Metadata

Data

13

Experimental Goals – Differing Security SLO

Demonstrate the advantages of achieving differing service
levels for data and meta-data for performance

Provide superior security by full-disk data encryption with
little or no metadata performance penalty

Compare metadata operation performance of UxFS and
UbFS

Evaluate performance impact of encryption on file system
operations while preserving SLO

Demonstrate higher performance for metadata intensive
workloads

14

Experimental Goals – Differing QoS for Data and Metadata

Demonstrate the control on QoS for data by separation from
metadata

Characterize the performance of different metadata
workloads for different classes of storage

Characterize the performance of different classes of storage
for data

Compare the different QoS performance and reliability

Evaluate performance of such tasks as fsck

15

Experimental Results

Use prototype UbFS file systems with split data/metadata

Concurrent dynamic support for both UbFS and UxFS file
systems.

Encapsulate existing LUN/volume structures

Add imported files into a Version Sets

Demonstrated higher performance using disk encryption
– Data-only encryption
– Metadata clear

Demonstrate higher performance for metadata workloads
– Metadata on high performance disk (RAID0)
– Data on lower performance disk (RAID5)

16

Experimental Results

Meta-data QoS Performance Chart for 100K Files < 10KB (Performance range 5-40%)

0

500

1000

1500

2000

2500

3000

Operation Type

RAM Disk 1737 978 84 1737 289 289 756 426

Striped Disk 1708 953 82 1708 280 280 758 417

Single Disk 1550 910 85 1550 262 262 676 398

UxFS 1527 868 80 1527 210 210 666 361

Tps Create/s Create/s with trans. Read/s Delete/s Delete/s with trans. Read [KB/sec] Write [KB/sec]

Encrypted Data Performance Chart for Files > 10KB (Performance
Range 5-45%)

0

500

1000

1500

2000

2500

3000

Operation Type

P
er

fo
rm

an
ce

 [
fi

le
s/

se
c]

New 1953 608 361 525

Old 1496 576 337 363

Lookup/s Read/s Create/s Delete/s

17

Additional Features --- File System Extension

metadata (fixed) data blocks

indirect blocks directory blocks

unused metadata blocks

unused data blocks

Metadata

Data

0

0

N

M

18

Additional Features --- Configurable Block Sizes

metadata (fixed) data blocks

indirect blocks directory blocks

unused metadata blocks

unused data blocks

Metadata

Data

0

0

N

M

• Metadata block size different from data block size

19

Did we invent the wheel? – Related Work

Dual FS is the closest to our approach applied to ext3
– Linux FS
– metadata organized as a log, separate from data volume

QFS and ZFS (SUN) is using similar separation: “Metadata
is stored on a separate device, reducing device head
movement and rotational latency and providing the ability to
mirror metadata only instead of all the data.”

Cray was looking at a similar file system architecture which
was implemented for the Fujitsu VPP5000 in 1998.

Storage Tank uses mostly separation of the namespace
and some file metadata but cannot be used on local disks

PanFS mainly separate the dynamic metadata and not
static and indirect blocks and indexing.

