Travel in the virtualized past:
cheap fares
and
first class seats

Liuba Shrira

(with Ross Shaull (Brandeis) and
Catharine van Ingen (Microsoft))

Long-lived snapshots

So, disk is cheap

a storage system can take snapshots of past states and retain for a
long time

Past state analysis is increasingly important...
CRM: Casino upgrades coupons for hi-spenders (the morning after)

ICU monitoring system: past response to drugs, interesting
snapshots: abnormalities, specialists' visits.. (one lifetime)

Wikipedia citation in a legal ruling: what was judge Posner
thinking? (many lifetimes)

How to support interesting past state analysis over long time?

Premise: BITE @

what you need is

a storage system capability for
back-in-time execution (BITE):
run read-only applications against
snapshots of past states in addition to
current state

to answer in real-time

new and old questions

What can you do with BITE?

Analyze past: to "predict future”

Reflect:
Organize past: "selective memory”

rank with BITE, keep interesting stuff for
longer

Verify past: "audited memory”

(spotless mind..)
validate constraints with BITE,
undo/fix "bad” transactions + dependents

BITE Snapshots:
Semantics

Consistent shapshots: invariants hold for old code
(consistency differs in different systems)

BITE of general code:
(ad-hoc new code vs canned queries)

Application chooses the snapshot: meaningful to app
(vs "some time in the past” in SI, or every 30sec)

at high "resolution” (vs backup)

BITE Snapshots:
Implementation

Where is your long-lived past ?

physically -

today: too close
(Postgress, Temporal DB, CVFS) disruptive in long term
or too far
(warehouse: Netezza) no real-time analysis

and logically, in the software stack -
too high
(e.g. logical record level) - complex
or low
(e.g. VSS, below cache) - disruptive for consistent snapshots

We want:

"Right” look:
snapshots, look like current state
(not the other way around — like temporal DB)

“Right" distance

run BITE programs in real-time in-house
non-disruptive to the storage system
(short or long term)

The "right look" -

past virtualized as current state

Our Snapshot System

X := Snapshot now

M

4 N
Application put

L get
_ /

Run on snapshot X

-~

Applications

to look like
present.

Back-In-Time
Execution

(BITE)
o

~

“time travel” in a
past virtualized

/

The “right distance” -

a shapshot box inside every storage system
runs code over snapshots in real-time

in-house (not warehouse)

“..a chicken in every pot”..

Current state DB storage: pages + page table

A Snapshot: virtualizes Db storage
snapshot pages + shapshot page table

So BITE is transparent:
for snapshot v mount Snapshot Page Table(v)

BITE(v): code accesses snapshot V pages
(1) page Q (modified after v) (2) P (unmodified)

Buffer cache

v (Q,off=st 1n 0)) x - (P, offeet_1n P
e - 1]
i : Q N P =
S y = < g— |
[— i
SPTV) " T
I.""II lead load x'u,h !
_-Il—o— —lTlllr—______\- _'__—'—_'_'_'_-.:.r —_— ——ll||l__ =
s —i'.______ _____ B l_.-"'______ﬂ—# e _ W - - _fl.-'___
™ D=<ve y b P
k-
“ve ‘ \x@ »

- i __DB diSk | :

But which cache?
— S >

Y e — -
—— ~<

e Our approach

— Virtualized

— Crash consistent

— Requires Write-Ahead IJD? ,,
Snapshot invariant ‘/71\

=~ (snapshot

Best Level for BITE?

e High level Application

— Database, file system —_— Database

— Leverage recovery

— Delay writes —» | File System

Volume Manager

Controller

L

-

Without cache: disk COW

e Ondisk

— Sync for consistency
— Negotiate with application to

allow progress to be made P Q
while syncing; worst case: ,, ,,
quiescence

- -

/’ \\\
—
4 \
I
{)
Y /
N
N
> Prad
s - -
~ S
7
—~

I
I
! \
I
/
/ | 3
\ | ‘
\ [|
e
]
l

S ,,
I _ e\
VR
ap O ’ /
2 /
‘< 7
cd
/// _- ‘1_—__——____,,,///
P e -
- /’/ /”
_-

m———p==T————

Split COW

DB

storage EA QM

PT

¥

step 1. app declares a snapshot vl
step 2: app modifies page P

split COW

DB Snapshots separate
storage |P|| QW i (SnapStore)
o]] B
Q I8
— W
PT W 1 SPTI

First P update after vl retains before-image of P

cont... app declares snapshot v2
app commits updates to P, Q

split COW

DB l l . SnapStore
Pl QW
storage)
P J ! ! Snapshot pages

PT |Q W
4—
W) spT1
4—
W] spT2

Snapshot page tables

split COW

DB P|| QW
storage N)
PT |Q
W <+—
BUY.

update in-place
Pay extra write
but no declustering

11

W
L

:

W

SPT1

I SPT2

SnhapStore

(cheap to change snapshot rep:
how (diff, stripe, crypto)

where you write)

2 st cow gy Indexing split COW
- snapshots
DB

storage [p|[dllw l l
4 A

P B Problem:
Code needs to

PT |Q
W i find
Q
W

snapshot (v)

pages
= SPTv For BITE (v)

! But updating
Q
_|
W

snapshot page
tables can be
— SPTv+1 costly

Instead: write snapshot page mappings in a log

Y v+1

Pl QW l
|
Q

W

N split COWH
)

maplog
DB
storage

PT

Lookup:
scan the maplog

Maplog: a hew indexing method
for split COW snapshots

Key notion: FEM - first encountered mapping

Notice where the mappings for v start in a log

Write mappings in correct order (decoupled from page order)

Mapping Order Invariant:
mappings retained for snapshot v,
are written before
mappings retained for snapshot v+1

Lookup

scan mapLog from start v collecting FEMs

MaplLog algorithm:

Start(vl) Start(v2)

rT

mapLog

FEM search =

agelLo) - N
Pag=-os Coupon collection

To lookup page P for snapshot v:
scan maplLog from Start(vl) to FEM(P)

N split COWH
)

DB
storage

st

PT

P

Q

W

P

Q

W

Skewed updates

Background mapping writes - cheap

But foreground scan to find
a “cold” page is slow -
“hot” mappings in the way

Yet, many mappings are “hot” and
many pages in a snapshot are “cold”

Skippy Scan

bl =
b - /
ﬁ .____'rull
- Iy
ed = __,
ld = u
t‘_rl....
Gl -
Pl -

id|| o=

2-Skippy: high lane drops duplicates

disk i/o optimal write and lookup operations

Allows to run code in real-time over
multi-year snapshots, as efficient
as short-lived snapshots
even in skewed workloads

As fast as fastest "as of" temporal access methods
(TSB,.)
but cheap writes (important for snapshot GC)

SNAP, non-disruptive split snapshot system
runs in experimental Thor-2 object storage system (icde0b),

Thresher, snapshot storage manager: no copy GC
runs in SNAP (usenix06)

SKIPPY, read-write optimized long-lived index method for COW
runs in SNAP, BDB (icde08)

SNAP/embed, split snapshots - in progress
runs in commercial BDB

Performance results look good

a 5000 feet view:

Non-disruptive snapshots
mean:

Snapshots should keep up with DB
performance

without blocking application
access to DB

N split COWH
)

Cost of WAS-Invariant

Prototype implemented in Berkeley DB 4.5.20
1.8 GB database; snap-1

Writing due to WAS (& Skippy) can be hidden
— Uniform: about 1 to 1 (cache: 9994 dirty pages)
— Highly skewed (99/1): 35to 1

— Trickle to avoid slowing down checkpoint
* Maintains WAS invariant because trickle before chkpt

Not end of story for BDB
— CPU costs: cache COW + Skippy
— We are analyzing how these costs can be minimized

<plit COW High-Order Bit:
w9

Long-lived, split snapshots of past states

that run code in real-time @

virtualized in the buffer cache

are cheaper than you may think!

New snapshot approach

new semantics: application specified, persistent,
discriminated

new architecture: split COW : Skippy, cache-COW, GC
virtualizes the past to look like the present

in the buffer manager

in my pot:
transactional storage system
SNAP, now Berkeley DB,

Your pot? BITE over our collective memories?

Freel
the cost:
creating (duplicating) for each rank
separate Mapper
IS minimal

Traversal T1.

Current Page-based /" Diff-based

DB snapshots | snapshots
17.53s 27.06s 42.11s

:4)

slow, but dual representation
accelerates to page-based

how much drop in
rate-of-drain / rate-of-pour ?

!. medium u,!

1 6.00%
14.00%
12.00% -
10.00%
8.00%
6.00%
4.00%
2.00%
ooon | N
low medium high

workload density

by, decrease over Thor

6.00%

5.00%

W
8 8
S

2.00%

by, decrease over Thor

1.00%

0.00%

B medium density. medium overwriting !

1-client

d-client &-client

number of concurrent clients

