

KVM PV DEVICES

dor.laor@qumranet.com

Agenda

- Kernel Virtual Machine overview
- Paravirtualized drivers intro & brief history
- VirtIO

Enhanced VirtIO with KVM support

Kernel Virtual Machine overview

- VM is a regular Linux process.
- KVM handles cpu & memory virtualization
- Qemu virtualizes IO devices

KVM Execution Model

Evolution of x86 virtualization

General & history

- Fully virtualized devices performs bad
 - •55 Mbps for RTL
 - Lots of io-exits per packet
- Decided to implement a modern e1000
 - Advantage:
 - Only Qemu coding
 - no guest tools involved
 - Irq coalescing
 - Only 2-3 io-exits per packet
 - Can be the base of user-space PV
- But then came Ingo...

PV driver architecture

General & history

- V0 leveraging Ingo Molnar's PV code
 - Make loadable module
 - Add HVM support
 - Add NAPI
 - Add memory barriers and improved ring
 - Keep running after performance & stability
 - Merge to the kernel?
- Alternatives
 - Xen
 - Polished drivers
 - Xen specific
 - VirtIO was just published.

VirtIO

- An API for virtual I/O
 - Implements network & block driver logic
 - Written by Rusty Russell
- Motivation
 - Many hypervisors of all types
 - Hard to tune and maintain each one
 - Code reuse The KVM way ;)
- Implementations
 - Lguest
 - KVM
 - Possible (Xen, UML, Qemu, VMware?..)

VirtIO

scatterlist sg[] for skb/blk_req data

VirtIO – Hypervisor specifics

The front end logic is implemented by VirtIO

- The backend needs
 - Probing & Bus services
 - Enumeration
 - Irq
 - Parameters (mac,..)
 - Shared memory with remote side
 - Hypercalls
 - Host driver/userspace backend

Enhanced VirtIO – Reuse the reuser

- Motivation
 - Increase re-use
 - Allow operation with various bus types
 - Make new devices code smallest
- Components
 - Shared memory code
 - With per hypervisor I/O hypercalls
 - Bus (pci, virtual bus)
 - Host backend

Enhanced VirtIO

Enhanced VirtIO

Status:

- Interface was enhanced
- KVM support
- PCI like configuration space added
- Actually we got re-used...

Result:

- Makes backend driver tiny
- 620 Mbps throughput for network
 - HVM Linux guest
 - Before optimization
 - Userspace backend driver

Enhanced VirtIO – shared memory backend

- VirtIO backend
 - Implements VirtIO interface
 - Callbacks to hypervisor and
- Code consists of
 - add_buf, get_buf, restart, detach_buf
 - Only shared memory logic needed
 - sync
 - Ring logic
 - IO pending hypercall
 - be_virtqueue_interrupt handler

Enhanced VirtIO – Day in a life of packet

Enhanced VirtIO – shared memory details

- Based on Iguest
- 1-1 shared memory
- Data structure
 - Page of descriptors for rx, tx.
 - Available pointers page controlled by guest
 - Used pointers page controlled by host
- SG list is currently internal to descriptors
 - Descriptors are chained by next pointer

Enhanced VirtIO – network be driver

Implements kvm_virtnet_probe for pci bus

Creates tx,rx be_new_virtqueue

- Probes virtnet
- Request_irq
 - Irq# taken from bus
- Register hypercall shared memory pfn
 - Device key for enumeration taken from bus

Further work

- Basic
 - Add readv/writev handlers to Qemu
 - Complete the user-space block device
 - Complete migration support
- Advanced (also simple)
 - Optimize and stabilize
 - Add host back end drivers
 - Add virtual bus
 - HVM improvements
 - Test with PV kernel

Thank you;)

