

Capability based Secure Access Control to Networked Storage Devices

Michael Factor, Dalit Naor, Eran Rom, Julian Satran, Liran Shour and Sivan Tal

IBM Haifa Research Lab

- Ourrent Access Control in the SAN.
- The OSD/CbCS Security protocol.
- The Implementation Architecture.
- I/O Path Performance Analysis.

Storage Area Network

Access Control in the SAN Port Zoning

Access Control in the SAN LUN Masking

The Security Problem

The Manageability Problem -1

The Manageability Problem -2

The Manageability Problem -3

CbCS - Capability based Command Security

- Independent of the underlying transport layer
- Access control is enforced using cryptographically hardened capabilities validated at the storage
- The Capabilities are presented to the storage with every I/O command
- The Capabilities are retrieved from security manager a single point of management
- The cryptographic hardening of capabilities assures that they cannot be forged, modified or replayed over different channels

The OSD/CbCS Model

Security/Policy Manager

The OSD/CbCS Protocol

CbCS Vs. Zoning/Masking

	Traditional zoning/Masking	Zoning/Masking with NPIV/FC-SP	CbCS
Prevents identity spoofing	No	Yes	Yes
Supports differentiated access per command	No	No	Yes
Supports physical adapter/port sharing	No	Yes	Yes
Transport layer independent	No	No	Yes
Single point of management	No	No	Yes

I/O Path Basic Architecture

I/O Path Implementation in Xen

Synthetic Sequential I/O: Constant Overhead of ~8 Microseconds per Command

Postmark Benchmark – Minimum, Average and Maximum of total 50 execution times in the various configurations

Bonnie++ Benchmark – Sequential Read and Write Average Rates in the various configurations

Concluding Remarks

- ObcS presents a good manageable and secured solution for access control in the SAN.
- The solution can be implemented without changing the underlying storage network, workloads or storage layout.
- **Obcs** incurs minimal time overhead.
- Obcs is a proposed standard, currently under review in the T10 technical committee.