
GWiQGWiQ--PP: An Efficient, Decentralized : An Efficient, Decentralized
GGridrid--WiWide de QQuota Enforcement uota Enforcement PProtocolrotocol

Kfir Karmon, Liran Liss and Assaf Schuster
Technion – Israel Institute of Technology

SYSTOR 2007SYSTOR 2007
IBM HRL, Haifa, IsraelIBM HRL, Haifa, Israel

Background – Grid Resources

Sum of all resources of the
same type constitutes a:

Grid Wide ResourceGrid Wide Resource
Same resource type

scattered over the grid

Background – Grid Resources

n Grid Wide Resources
n CPU hours
n Disk space
n DB Connections
n Outbound traffic
n Concurrent number of CPUs
n Allocated RAM
n Floating Software Licenses
n Open sockets
n Etc…

GWiQ Motivation

n A grid wide resource tends to be huge
and can be exploited

n Grid Wide Quota Enforcement is vital:
n Security: Prohibit malicious use
n Fail Safe: Prevent resource leaks (bugs)
n Financial: Moderate use per paid share

Centralized GWiQ Enforcement

n Central server holds the GWiQ bounds
for each (user, resource) tuple

n Per request, resource usage permits are
leased until the GWiQ is exhausted.

Latency
ScalabilityCongestion

Objectives

n We strive for a Grid Wide Quota
enforcement protocol that is:
n Decentralized: No hotspots, No single point

of failure.
n Efficient: Overcome latency caused by

grid’s physical distribution.
n Scalable: Can handle Mega-Grids

GWiQ-P:
Grid Wide Quota enforcement Protocol

GWiQ-P: Basic Concept

GWiQ Enforcement GWiQ Enforcement
óó

At all times the sum of all local quotas < GWiQAt all times the sum of all local quotas < GWiQ

n Using sandboxes to enforce local quotas
n Given a attempt to access the resource:

n If (local-quota >= request) then
n Grant access
n local-quota = local-quota – request

n Else
n Freeze job execution until local-quota reinforced

GWiQ-P: Resource Coins
n A resource coin denotes the smallest

consumable portion of a grid resource.
n Each (user, resource) GWiQ is broken

down to coins.
n A user’s job may use the resource up to

the amount that the coins are worth.
n i.e. Depositing four 1MB coins grants the

job (another) 4MB to use
GWiQ

Local Quota = Hosting Local Quota = Hosting SBoxSBox’’ss resident coins resident coins

GWiQ-P – Spanning Forest

n Using a BF-based alg we build a
spanning forest.

n A sandbox hosting a needy job
will start forming a tree around
itself.

n At all times, each neighbor will
join the tree to which it is closest
to its root.
n Member of one tree at a time.

n Surplus coins will be transferred
to the root.

Need 3
coins

GWiQ-P : In action 1/5

I need
coins

I need
1 coins

1

16151413

1211109

6 7 8

432

5

GWiQ-P : In action 2/5

I need
coins

I need
1 coins

1

16151413

1211109

6 7 8

432

5

I need
coins

GWiQ-P : In action 3/5

I need
3 coins

1

16151413

1211109

6 7 8

432

5

I need
coins

I need
1 coins

GWiQ-P : In action 4/5
1

16151413

1211109

6 7 8

432

5

I need
coins

GWiQ-P : In action 5/5
1

16151413

1211109

6 7 8

432

5

I need
coins

GWiQ-P: Fault Intolerance

n Links and nodes may crash
n Link crash è Passing coins are lost
n Node crash è Local coins are lost

n Lost coins óó Unfair GWiQ reduction
n Can’t be sure how many coins are on the wire

n Did my neighbor send something?
n Have the coins I sent reached already?

n How do we restore unknown lost coins???

FT Solution1: Transactional

n Coin transfers are done in Transactions
n Pros

n Coins never lost on transfer
n Cons

n Slowdown
n Needs persistent storage
n Node failure (temporarily?) reduces GWiQ

by local quota

FT Solution2: Light Weight 1/6

n Machine down ó All of its links are down
n Each node holds a counter for every link.

n FTCounter = Sent coins – Received coins
n FTCounter = Net number of transferred coins

n When a link goes down:
n If FTCounter < 0

n Create a fictive demand for |FTCounter| coins

n Else
n |FTCounter| coins are added to the node’s surplus

FT Solution2: Light Weight 2/6
tim

e FTCounter=0 FTCounter=0

I need 2
coins

I need 2
coins

FTCounter=+2 FTCounter=0

I need 2
coins

n Example 1:

FT Solution2: Light Weight 3/6

FTCounter=+1 FTCounter=-1

tim
e

I need 2
coins

I need 2
coins

FTCounter=+3 FTCounter=-1

n Example 2:

I need 2
coins

Fictive Demand
I need 1 coins

Temporary
breach

FT Solution2: Light Weight 4/6

FTCounter=-1 FTCounter=+1

tim
e

I need 2
coins

I need 2
coins

FTCounter=+1 FTCounter=+1

I need 2
coins

n Example 3:

FTCounter=0 FTCounter=0FTCounter=0 FTCounter=0

FT Solution2: Light Weight 5/6
tim

e

n Example 4:
FTCounter=0 FTCounter=0 FTCounter=0FTCounter=0

FTCounter=+2 FTCounter=-2 FTCounter=+2 FTCounter=-2

Fictive Demand
I need 2 coins

Temporary
breach

FT Solution2: Light Weight 6/6

n Pro
n No latency
n No need for persistent storage
n GWiQ never unfairly reduced

n Con
n May introduce temporary GWiQ breaches

FT Solution3: Hybrid 1/2

n Use the Light-Weight solution regularly
n Only con to deal with: GWiQ breaches

n Caused by loaded FTCounters

n Issue FTCounter balancing Transactions
n If |FTCounteri,j| > Threshold

n Disallow link usage. Start transaction.
n FTCounteri,j = FTCounterj,i = 0
n End transaction. Resume link usage.

n Or, issue periodically.

FT Solution3: Hybrid 2/2

n Pro
n Reduce breaches’ size
n No slowdowns (mostly)
n No persistence storage (mostly)
n Node crash fully remedied immediately also

n Con
n See other side of the ‘Pro’-coin ;)

n Play with the tradeoff using parameterization

Due to
Light Weight

Due to
Transactions

GWiQ-P: Properties

n Small trees form around demand
n Requests are remedied locally

n Coins are drawn towards ’hot’ areas
n Auto-Adaptable

n Fully distributed
n No hot-spots & single points of failure
n Low latency
n No Congestion
n Infinitely Scalable

n Fault Tolerant

Simulations’ (default) Properties

n Toplogy = BriteAS
n Fast LANs, slower intercon/

n NetSize = 10K
n Q/D=1

n Q for GWiQ; D for Overall demand

n Change Rate = 1%*D/E[EdgeDelay]
n Demanders = 1%*NetSize
n Fail Rate = 1%*Edges/E[EdgeDelay]

n Applicable for FT scenarios

Lan

Lan

Lan

Lan

Lan

Lan

Simulations 1/6
n Topology: BriteAS
n Change rate: 1%*D/E[EdgeDelay]

n Q/D=1
n Demanders: 1%

GWiQ-P scalability
due to locality

Simulations 2/6
n Topology: 10K BriteAS n Demanders: 1%

Simulations 3/6
n Topology: 10K BriteAS
n E[EdgeDelay] ~= 3 ms

Return to
99% sat after

=~ 30ms

n Change rate: One Time 1%*D
n Demanders: 1%

Simulations 4/6
n Topology: 10K BriteAS
n Change rate: 1%*D/E[EdgeDelay]
n Fail rate: 1%*Edges/E[EdgeDelay]

Plane depicts
sat in ‘no-faults’

scenario

Threshold=0
óó

Transactions

Excess coin
exploitation

n Q/D=1
n Demanders: 1%

Simulations 5/6
n Topology: 10K BriteAS
n Change rate: 1%*D/E[EdgeDelay]
n Fail rate: 1%*Edges/E[EdgeDelay]

n Q/D=0.5
n Demanders: 1%

Simulations 6/6
n Topology: BriteAS
n Change rate: 1%*D/E[EdgeDelay]
n Fail rate: 1%*Edges/E[EdgeDelay]

n Q/D=1
n Demanders: 1%

Same distribution,
growing network.

Locality in FT

Conclusion

n We displayed GWiQ-P, a Grid Wide Quota
enforcement Protocol

n GWiQ-P is infinitely scalable
n GWiQ-P is fully distributed
n GWiQ-P is local hence very efficient
n GWiQ-P is fault tolerant

Thank You!

Contact: Kfir Karmon
karmon@cs.technion.ac.il

