GWIiQ-P: An Efficient, Decentralized
Grid-Wide Quota Enforcement Protocol

Kfir Karmon, Liran Liss and Assaf Schuster
Technion — Israel Institute of Technology

SYSTOR 2007
IBM HRL, Haifa, Israel

Background — Grid Resources

_Grid- Wide Resource |\

Same resource type
scattered over the grid

N

Background — Grid Resources

= Grid Wide Resources
= CPU hours
= Disk space
=« DB Connections
= Outbound traffic /\
= Concurrent number of CPUs
= Allocated RAM
« Floating Software Licenses \\:

= Open sockets
= Etc...

GWIiQ Motivation

= A grid wide resource tends to be huge
and can be exploited

= Grid Wide Quota Enforcement is vital:
= Security: Prohibit malicious use

= Fail Safe: Prevent resource leaks (bugs)
= Financial: Moderate use per paid share

Centralized GWiQ Enforcement

= Central server holds the GWiQ bounds
for each (user, resource) tuple

= Per request, resource usage permits are
leased until the GQ IS exhausted.

Objectives

= We strive for a Grid Wide Quota
enforcement protocol that is:

= Decentralized: No hotspots, No single point
of failure.

= Efficient: Overcome latency caused by
grid’s physical distribution.

» Scalable: Can handle Mega-Grids

GWIiQ-P:

!'_\ Grid Wide Quota enforcement Protocol

GWIiQ-P: Basic Concept

GWiQ Enforcement
&

At all times the sum of all local quotas < GWIQ

= Using sandboxes to enforce local quotas

= Given a attempt to access the resource:

« If (local-quota >= request) then
= Grant access
=« local-quota = local-quota — request

= Else
= Freeze job execution until local-quota reinforced

GWIiQ-P: Resource Coins

s A resource coin denotes the smallest
consumable portion of a grid resource.

= Each (user, resource) GWIiQ is broken
down to coins.

= A user’s job may use the resource up to
the amount that the coins are worth.

= i.e. Depositing four 1MB coins grants th%%
job (another) 4MB to use _ 1_

2 e =

Local Quota = Hosting SBox’s resident coins E ?

\—/

GWIiQ-P — Spanning Forest

= Using a BF-based alg we build a
spanning forest.

= A sandbox hosting a needy job
will start forming a tree around
itself.

= At all times, each neighbor will
join the tree to which it is closest
to its root.

= Member of one tree at a time.

to the root.

In action 1/5

GWIiQ-P

In action 2/5

GWIiQ-P

N © e 2
e Y Y Y
5 o 2
3 —]
C
O N\ = .)y p=y.
-Lu / / / /
@
(O
C
=]
(@]
= XY

GWIiQ-P

W

N
< cO l

\o)
Ay WAy WY/ =

A3 N - =
\“\o\\\ \w\o\\\ \w\o\\\ \“\o\\\

In action 4/5

=
Q
=
G

NV

\ o

Hz?
oM
Jo) N NYe W Y

coins

In action 5/5
<

= ._ xp)
Ay Y Ay

i

=
Q
=
G

GWiQ-P: Fault Intolerance

= Links and nodes may crash
= Link crash = Passing coins are lost
= Node crash =» Local coins are lost

m Lost coins < Unfair GWIiQ reduction

= Can’t be sure how many coins are on the wire
= Did my neighbor send something?
= Have the coins I sent reached already?

= How do we restore unknown lost coins???

FT Solutionl1: Transactional

= Coin transfers are done in Transactions

s Pros
= Coins never lost on transfer

= Cons
= Slowdown
= Needs persistent storage

= Node failure (temporarily?) reduces GWiQ
by local quota

FT Solution2: Light Weight 1/6

= Machine down & All of its links are down

= Each node holds a counter for every link.
= FTCounter = Sent coins — Received coins
s FTCounter = Net number of transferred coins

= When a link goes down:

« If FTCounter < 0
= Create a fictive demand for |FTCounter| coins

= Else
= |FTCounter| coins are added to the node’s surplus

FT Solution2: Light Weight 2/6

= Example 1:

time

<
</// //\/

FT Solution2: Light Weight 3/6

= Example 2:

Q FTCounter=+1 ’ ‘ FTCounter=-1
e
] o I need 2
3
X
FTCounter=+3 ’ ‘ FTCounter=-1
I need 2
coins
Temporary Fictive Demand
breach I need 1 coins
R~ I need 2
3
vV &

FT Solution2: Light Weight 4/6

= Example 3:

FTCounter=-1 ’ ‘ FTCounter=+1 I

FTCounter=+1 H FTCounter=+1

r

\4

time
</// “la \/

FT Solution2: Light Weight 5/6

= Example 4:

FTCounter=0 H FTCounter=0 FTCounter=0 H FTCounter=0

time

Temporary Fictive Demand
breach I need 2 coins

FT Solution2: Light Weight 6/6

= Pro
= No latency
= No need for persistent storage
=« GWIiQ never unfairly reduced
= Con
=« May introduce temporary GWiQ breaches

FT Solution3: Hybrid 1/2

= Use the Light-Weight solution regularly

= Only con to deal with: GWiQ breaches
= Caused by loaded FTCounters

= Issue FTCounter balancing Transactions

= If |[FTCounter;;| > Threshold

= Disallow link usage. Start transaction.
= FTCounter;; = FTCounter;; = 0
= End transaction. Resume link usage.

= Or, issue periodically.

FT Solution3: Hybrid 2/2

= Pro
Dueto [4 Reduce breaches’ size
Transactions
= No slowdowns (mostly)
Dot weignes @ NO persistence storage (mostly)
= Node crash fully remedied immediately also

= Con
= See other side of the ‘Pro’-coin ;)
= Play with the tradeoff using parameterization

GWIiQ-P: Properties

= Small trees form around demand
= Requests are remedied locally

= Coins are drawn towards 'hot’ areas
= Auto-Adaptable

= Fully distributed
= No hot-spots & single points of failure
=« Low latency
= No Congestion
= Infinitely Scalable

= Fault Tolerant

Simulations’ (default) Properties

= [oplogy = BriteAS
= Fast LANSs, slower intercon/

s NetSize = 10K
[Q/D=1
= Q for GWIiQ; D for Overall demand
= Change Rate = 1%*D/E[EdgeDelay]
= Demanders = 1% *NetSize
= Fail Rate = 1%*Edges/E[EdgeDelay]
= Applicable for FT scenarios

Simulations 1/6

= Topology: BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%

A e eene LT T T PP PPRRREE
=N T SR ;
A
— il e +h
=] . -
E. ?Dt:-— —
o : :
L : :
E BOF---e e —ale— SYWi0-P on BriteAS
S gl ST —&— GWiGQ-F on Mesh GWIiQ-P scalability
= - : — e - Centralized on BriteAS | due to IOcaIity
o Alg - n.._,H P — @ - Centralized on Mesh
= ' Ce : ; :
e a0 ST - T e :
E \" Hli-\-\. :
0 Mk N T
~, ' e :
.\"' : =~ " 3
MMF- e '.,& P L :
' Ih-'l\-_ :
. LT NPT
10K 20 401 B0k

Number of grid nodes [log]

Simulations 2/6

= Topology: 10K BriteAS = Demanders: 1%

g ‘
-

]
(]
2

5O ...

40

204

Satisfied Demand [%0]

=
i

0.1 % -
1%

=

10%
ChangeRate[2D emond | %Ratirﬂ

EdageDelay

Simulations 3/6

= Topology: 10K BriteAS = Change rate: One Time 1%*D
= E[EdgeDelay] ~= 3 ms = Demanders: 1%
100

ol I N I I T e iR

R e T
ST | 99% sat after
QE R O T — U 30ms

I o I P | | N I T

O

53_ ...

Demand Satisfaction [%o]

52_ P

L I R | 1 P T T

QD_...I e [:

| I I.
100 180 200 250 300 350 400
Time [ticks]

Simulations 4/6

= Topology: 10K BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1°/o*Edges/E[EdgeDeIE_a_y]

N e Plane depicts
Excess coin T > ==] satin’‘no-faults’
exploitation] __ - .’.\.’ e Scenario
= 08 $|< S
§ e S
:
= 0.4 - _
o Threshold=0
E 0.2 - &
. Transactions
inf e .
T = "

200

Balancing Factor
alancing Factor 4 Balancing Threshold

Simulations 5/6

= Topology: 10K BriteAS = Q/D=0.5
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1%*Edges/E[EdgeDelay]

550 — No Balancing
— BalancingFactor=2
— BalancingFactor=1
500 — BalancingFactor=0.5
— Transac tions
450
=
B 400 LN
@
o
m
o 350 ..
©
=3
(&)
= 300
=
=
3
0 250 e I LR
o
DO et PNl
150 e e el W
100 ! ! ! | .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [ticks]

Simulations 6/6

= Topology: BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1%*Edges/E[EdgeDelay]

Nodes' Tree-Sizes Distribution

e iry] Same distribution,
P] growing network.
Locality in FT

03—

0.2 {7

0.4 17"

01

Conclusion

= We displayed GWiQ-P, a Grid Wide Quota
enforcement Protocol

= GWIiQ-P is infinitely scalable

= GWIiQ-P is fully distributed

= GWIiQ-P is local hence very efficient
= GWIiQ-P is fault tolerant

Thank You!

Contact: Kfir Karmon

karmon@cs.technion.ac.il

