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Background — Grid Resources

_Grid- Wide Resource |\

Same resource type
scattered over the grid

N




Background — Grid Resources

= Grid Wide Resources
= CPU hours
= Disk space
=« DB Connections
= Outbound traffic /\
= Concurrent number of CPUs
= Allocated RAM
« Floating Software Licenses \\:

= Open sockets
= Etc...




GWIiQ Motivation

= A grid wide resource tends to be huge
and can be exploited

= Grid Wide Quota Enforcement is vital:
= Security: Prohibit malicious use

= Fail Safe: Prevent resource leaks (bugs)
= Financial: Moderate use per paid share




Centralized GWiQ Enforcement

= Central server holds the GWiQ bounds
for each (user, resource) tuple

= Per request, resource usage permits are
leased until the GQ IS exhausted.




Objectives

= We strive for a Grid Wide Quota
enforcement protocol that is:

= Decentralized: No hotspots, No single point
of failure.

= Efficient: Overcome latency caused by
grid’s physical distribution.

» Scalable: Can handle Mega-Grids



GWIiQ-P:

!'_\ Grid Wide Quota enforcement Protocol



GWIiQ-P: Basic Concept

GWiQ Enforcement
&

At all times the sum of all local quotas < GWIQ

= Using sandboxes to enforce local quotas

= Given a attempt to access the resource:

« If (local-quota >= request) then
= Grant access
=« local-quota = local-quota — request

= Else
= Freeze job execution until local-quota reinforced




GWIiQ-P: Resource Coins

s A resource coin denotes the smallest
consumable portion of a grid resource.

= Each (user, resource) GWIiQ is broken
down to coins.

= A user’s job may use the resource up to
the amount that the coins are worth.

= i.e. Depositing four 1MB coins grants th%%
job (another) 4MB to use _ 1_

2 e =

Local Quota = Hosting SBox’s resident coins E ?

\—/



GWIiQ-P — Spanning Forest

= Using a BF-based alg we build a
spanning forest.

= A sandbox hosting a needy job
will start forming a tree around
itself.

= At all times, each neighbor will
join the tree to which it is closest
to its root.

= Member of one tree at a time.

to the root.




In action 1/5

GWIiQ-P




In action 2/5

GWIiQ-P
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In action 4/5
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GWiQ-P: Fault Intolerance

= Links and nodes may crash
= Link crash = Passing coins are lost
= Node crash =» Local coins are lost

m Lost coins < Unfair GWIiQ reduction

= Can’t be sure how many coins are on the wire
= Did my neighbor send something?
= Have the coins I sent reached already?

= How do we restore unknown lost coins???




FT Solutionl1: Transactional

= Coin transfers are done in Transactions

s Pros
= Coins never lost on transfer

= Cons
= Slowdown
= Needs persistent storage

= Node failure (temporarily?) reduces GWiQ
by local quota



FT Solution2: Light Weight 1/6

= Machine down & All of its links are down

= Each node holds a counter for every link.
= FTCounter = Sent coins — Received coins
s FTCounter = Net number of transferred coins

= When a link goes down:

« If FTCounter < 0
= Create a fictive demand for |FTCounter| coins

= Else
= |FTCounter| coins are added to the node’s surplus




FT Solution2: Light Weight 2/6

= Example 1:

time

<
</// //\/



FT Solution2: Light Weight 3/6

= Example 2:

Q FTCounter=+1 ’ ‘ FTCounter=-1
e
] o I need 2
3
X
FTCounter=+3 ’ ‘ FTCounter=-1
I need 2
coins
Temporary Fictive Demand
breach I need 1 coins
R~ I need 2
3
vV &



FT Solution2: Light Weight 4/6

= Example 3:

FTCounter=-1 ’ ‘ FTCounter=+1 I

FTCounter=+1 H FTCounter=+1

r

\4

time
</// “la \/




FT Solution2: Light Weight 5/6

= Example 4:

FTCounter=0 H FTCounter=0 FTCounter=0 H FTCounter=0

time

Temporary Fictive Demand
breach I need 2 coins




FT Solution2: Light Weight 6/6

= Pro
= No latency
= No need for persistent storage
=« GWIiQ never unfairly reduced
= Con
=« May introduce temporary GWiQ breaches



FT Solution3: Hybrid 1/2

= Use the Light-Weight solution regularly

= Only con to deal with: GWiQ breaches
= Caused by loaded FTCounters

= Issue FTCounter balancing Transactions

= If |[FTCounter;;| > Threshold

= Disallow link usage. Start transaction.
= FTCounter;; = FTCounter;; = 0
= End transaction. Resume link usage.

= Or, issue periodically.




FT Solution3: Hybrid 2/2

= Pro
Dueto [ 4 Reduce breaches’ size
Transactions
= No slowdowns (mostly)
Dot weignes @ NO persistence storage (mostly)
= Node crash fully remedied immediately also

= Con
= See other side of the ‘Pro’-coin ;)
= Play with the tradeoff using parameterization




GWIiQ-P: Properties

= Small trees form around demand
= Requests are remedied locally

= Coins are drawn towards 'hot’ areas
= Auto-Adaptable

= Fully distributed
= No hot-spots & single points of failure
=« Low latency
= No Congestion
= Infinitely Scalable

= Fault Tolerant




Simulations’ (default) Properties

= [oplogy = BriteAS
= Fast LANSs, slower intercon/

s NetSize = 10K
[ Q/D=1
= Q for GWIiQ; D for Overall demand
= Change Rate = 1%*D/E[EdgeDelay]
= Demanders = 1% *NetSize
= Fail Rate = 1%*Edges/E[EdgeDelay]
= Applicable for FT scenarios




Simulations 1/6

= Topology: BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
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Simulations 2/6

= Topology: 10K BriteAS = Demanders: 1%
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Simulations 3/6

= Topology: 10K BriteAS = Change rate: One Time 1%*D
= E[EdgeDelay] ~= 3 ms = Demanders: 1%
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Simulations 4/6

= Topology: 10K BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1°/o*Edges/E[EdgeDeIE_a_y]
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Simulations 5/6

= Topology: 10K BriteAS = Q/D=0.5
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1%*Edges/E[EdgeDelay]
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Simulations 6/6

= Topology: BriteAS = Q/D=1
= Change rate: 1%*D/E[EdgeDelay] = Demanders: 1%
= Fail rate: 1%*Edges/E[EdgeDelay]

Nodes' Tree-Sizes Distribution
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Conclusion

= We displayed GWiQ-P, a Grid Wide Quota
enforcement Protocol

= GWIiQ-P is infinitely scalable

= GWIiQ-P is fully distributed

= GWIiQ-P is local hence very efficient
= GWIiQ-P is fault tolerant




Thank You!

Contact: Kfir Karmon

karmon@cs.technion.ac.il



