GWiQ-P: An Efficient, Decentralized Grid-Wide Quota Enforcement Protocol

Kfir Karmon, Liran Liss and Assaf Schuster Technion – Israel Institute of Technology

> SYSTOR 2007 IBM HRL, Haifa, Israel

Background – Grid Resources

Grid Wide Resource

Background – Grid Resources

- Grid Wide Resources
 - CPU hours
 - Disk space
 - DB Connections
 - Outbound traffic
 - Concurrent number of CPUs
 - Allocated RAM
 - Floating Software Licenses
 - Open sockets
 - Etc...

GWiQ Motivation

- A grid wide resource tends to be huge and can be exploited
- Grid Wide Quota Enforcement is vital:
 - Security: Prohibit malicious use
 - Fail Safe: Prevent resource leaks (bugs)
 - Financial: Moderate use per paid share

Centralized GWiQ Enforcement

- Central server holds the GWiQ bounds for each (user, resource) tuple
- Per request, resource usage permits are leased until the GWiQ is exhausted.

Objectives

- We strive for a Grid Wide Quota enforcement protocol that is:
 - Decentralized: No hotspots, No single point of failure.
 - Efficient: Overcome latency caused by grid's physical distribution.
 - Scalable: Can handle Mega-Grids

GWiQ-P: Grid Wide Quota enforcement Protocol

GWiQ-P: Basic Concept

GWiQ Enforcement

At all times the sum of all local quotas < GWiQ

- Using sandboxes to enforce local quotas
- Given a attempt to access the resource:
 - If (local-quota >= request) then
 - Grant access
 - local-quota = local-quota request
 - Else
 - Freeze job execution until local-quota reinforced

GWiQ-P: Resource Coins

- A resource coin denotes the smallest consumable portion of a grid resource.
- Each (user, resource) GWiQ is broken down to coins.
- A user's job may use the resource up to the amount that the coins are worth.
 - i.e. Depositing four 1MB coins grants the job (another) 4MB to use

Local Quota = Hosting SBox's resident coins

GWiQ-P – Spanning Forest

- Using a BF-based alg we build a spanning forest.
- A sandbox hosting a needy job will start forming a tree around itself.
- At all times, each neighbor will join the tree to which it is closest to its root.
 - Member of one tree at a time.
- Surplus coins will be transferred to the root.

GWiQ-P: In action 1/5

GWiQ-P: In action 2/5

GWiQ-P: In action 3/5

GWiQ-P: In action 4/5

GWiQ-P: In action 5/5

GWiQ-P: Fault Intolerance

- Links and nodes may crash
 - Link crash → Passing coins are lost
 - Node crash → Local coins are lost
- Lost coins ⇔ Unfair GWiQ reduction
- Can't be sure how many coins are on the wire
 - Did my neighbor send something?
 - Have the coins I sent reached already?
- How do we restore unknown lost coins???

FT Solution1: Transactional

- Coin transfers are done in Transactions
- Pros
 - Coins never lost on transfer
- Cons
 - Slowdown
 - Needs persistent storage
 - Node failure (temporarily?) reduces GWiQ by local quota

FT Solution2: Light Weight 1/6

- Machine down ⇔ All of its links are down
- Each node holds a counter for every link.
 - FTCounter = Sent coins Received coins
 - FTCounter = Net number of transferred coins
- When a link goes down:
 - If FTCounter < 0</p>
 - Create a fictive demand for |FTCounter| coins
 - Else
 - | FTCounter | coins are added to the node's surplus

FT Solution2: Light Weight 2/6

Example 1:

FT Solution2: Light Weight 3/6

Example 2:

FT Solution2: Light Weight 4/6

Example 3:

FT Solution2: Light Weight 5/6

Example 4:

FT Solution2: Light Weight 6/6

- Pro
 - No latency
 - No need for persistent storage
 - GWiQ never unfairly reduced
- Con
 - May introduce temporary GWiQ breaches

FT Solution3: Hybrid 1/2

- Use the Light-Weight solution regularly
- Only con to deal with: GWiQ breaches
 - Caused by loaded FTCounters
- Issue FTCounter balancing Transactions
 - If |FTCounter_{i,i}| > Threshold
 - Disallow link usage. Start transaction.
 - FTCounter_{i,i} = FTCounter_{i,i} = 0
 - End transaction. Resume link usage.
 - Or, issue periodically.

FT Solution3: Hybrid 2/2

Pro

- Due to Transactions Reduce breaches' size

 No slowdowns (mostly)

Due to Light Weight

- No persistence storage (mostly)
- Node crash fully remedied immediately also
- Con
 - See other side of the 'Pro'-coin;)
- Play with the tradeoff using parameterization

GWiQ-P: Properties

- Small trees form around demand
 - Requests are remedied locally
- Coins are drawn towards 'hot' areas
 - Auto-Adaptable
- Fully distributed
 - No hot-spots & single points of failure
 - Low latency
 - No Congestion
 - Infinitely Scalable
- Fault Tolerant

Simulations' (default) Properties

- Toplogy = BriteAS
 - Fast LANs, slower intercon/
- NetSize = 10K
- Q/D=1
 - Q for GWiQ; D for Overall demand
- Change Rate = 1%*D/E[EdgeDelay]
- Demanders = 1%*NetSize
- Fail Rate = 1%*Edges/E[EdgeDelay]
 - Applicable for FT scenarios

Simulations 1/6

- Topology: BriteAS
- Change rate: 1%*D/E[EdgeDelay]
- Q/D=1
- Delay] Demanders: 1%

Simulations 2/6

Topology: 10K BriteAS

Demanders: 1%

Simulations 3/6

- Topology: 10K BriteAS
- E[EdgeDelay] ~= 3 ms

- Change rate: One Time 1%*D
- Demanders: 1%

Simulations 4/6

Topology: 10K BriteAS

Change rate: 1%*D/E[EdgeDelay]

Fail rate: 1%*Edges/E[EdgeDelay]

Q/D=1

Demanders: 1%

Simulations 5/6

Topology: 10K BriteAS

Change rate: 1%*D/E[EdgeDelay]

Fail rate: 1%*Edges/E[EdgeDelay]

Q/D=0.5

Demanders: 1%

Simulations 6/6

Topology: BriteAS

Change rate: 1%*D/E[EdgeDelay] • Demanders: 1%

Fail rate: 1%*Edges/E[EdgeDelay]

Q/D=1

Conclusion

- We displayed GWiQ-P, a Grid Wide Quota enforcement Protocol
- GWiQ-P is infinitely scalable
- GWiQ-P is fully distributed
- GWiQ-P is local hence very efficient
- GWiQ-P is fault tolerant

Thank You!

Contact: Kfir Karmon karmon@cs.technion.ac.il