

Outline

- Block Storage Clustering
- SCSI Referral
- Prototype and Performance
- Conclusion

Block Storage Clustering – Why Bother?

- Capacity
 - Applications need volumes larger than a single storage system
 - Concatenating small volumes into larger capacity volumes
- Performance
 - Applications need data access faster than single storage systems support
 - Stripe across multiple disks and storage devices
- Expandability
 - Storage capacity and performance need to grow with application demands
 - Pay as you grow cluster from 1 node to N nodes
- Affordability
 - Need to build clusters from lower-cost / smaller systems
 - Minimize extra hardware required for cluster support

Block Storage Clustering – 10k Meter Perspective

- Architecture
 - Applications
 - Distributed SCSI Protocol Stack
 - Virtualized Volumes
- Variations
 - Initiator based virtualization
 - Left Hand Networks
 - Linux Logical Volume Manager (LVM)
 - Network based virtualization
 - LSI's StoreAge Data Path Module (DPM)
 - IBM's SAN Volume Controller
 - Target based virtualization
 - Dell's EqualLogic
 - IBRIX Fusion
 - See paper for Pros/Cons

SCSI Referral

SCSI Referral – How It Works

- Extend T10 Command Response Protocol
 - When all data available at SCSI port (cluster node):
 - Operate as current T10
 - When all data is not available at SCSI port (cluster node):
 - Target returns immediate response with referral information
 - Each referral includes: Port Identifier, Offset, Length
 - Initiator uses descendent Referral Commands to access data
 - Initiator gathers descendent command response

SCSI Referral – Architecture

- Single Device Identifier
 - Each port has a unique identifier
 - Cluster is a single multi-ported device
- Cluster Nodes Are Equal Peers
 - Initiator accesses data on any port
- Unified LUN Namespace
 - Nodes present same LUNs
 - LBA map known by all cluster nodes
- Initiator Handles Referral Response
 - Redirects commands to get data
 - Optionally caches referral information

SCSI Referral – Example

- Block Storage Cluster:
 - Four single ported nodes
- Virtual Volume:
 - 100 block segments
 - Concatenated virtual volume
- Server Issues Original I/O:
 - LBA 150, Length 100 to Port 1
- Node 1 Returns Referral List:
 - Port 1, LBA 150, Length 50
 - Port 2, LBA 200, Length 50
- Server Issues Referral I/Os:
 - LBA 150, Length 50 to port 1
 - LBA 200, Length 50 to port 2
- Data Transferred in Parallel
- Status is Merge of Referral I/O Status

SCSI Referral – Caching

- Contain Segment Boundary Information
 - One cache line per boundary
 - Cache entry format:
 - · Boundary LBA, Access Port
- Cache Example
 - Cache contents after Example I/O
 - New I/Os can be split using cached boundaries
- Cache Characteristics
 - Not a volume map
 - Updated by referrals
 - Can be incomplete
 - Can be inaccurate
 - Not persistent
 - Target can move data

SCSI Referral – Striping, Multiple Paths, ...

- Striping
 - Alternate algorithmic format used to describe boundary locations
 - · Both in referral and initiator "cache"
 - · More efficient lookup for striping, less space in referral, and in initiator cache
 - Cache still used to hold exception boundaries for remapped data
- Multiple Path Support
 - Ports replaced by port lists in Referral and Cache records
 - Supports redundant paths for MPIO and RDAC
- Load Balancing
 - Quality/Priority value associated with each port
 - Allows initiator to pick best port for an I/O from multiple paths
 - Allows target to direct initiator to preferred path
 - Target can dissemble giving different initiators different views of the data layout
- Arbitrary Scaling
 - Sense data for referral list in command response is limited
 - A referral I/O can result in yet another referral
 - · Chains and trees of referrals
- Data Pre-fetching for Referral I/O
 - Node generating referral can pre-fetch data for its referral I/O
 - Storage cluster nodes can exchange pre-fetch notices before referral I/O arrives
 - Data or buffers can be ready for immediate use when referral I/O arrives
- Explicit Segment Boundaries
 - Referral includes starting LBA of each segment referenced by original I/O
 - Initiator can update cache more quickly

Prototype Implementations

- Storage Node Controller Implementation
 - Controller Firmware, Author: Ross Zwisler
- Three Application Server Implementations
 - Windows RDAC, Author: Scott Masterson
 - Linux RDAC, Author: Ross Zwisler
 - LSI 1068 SAS HBA FW, Author: Mike Fry (LSI SCG)
- Performance Tests Run in Windows and Linux
 - Concatenated virtual volumes
 - Striped virtual volumes
 - No I/O optimization was done
- Performance Compared to Standard OS Tools
 - Windows Logical Disk Manager (LDM)
 - Linux Logical Volume Manager (LVM)
 - LSI StoreAge SVM Host Agent
- Tested SAN Transports
 - SAS, Fibre Channel, and iSCSI
 - iSCSI prototype took only 2 days
- Important Points:
 - Linear scaling
 - Compares well with established solutions
 - With referrals no host side configuration

Prototype Performance

4kB Random Write Performance - Linux SAS

SAS, Raw I/O, 200 GB 5+1 RAID 5 volumes, "logen" I/O tool, "noop" Linux I/O elevator

Prototype Performance

4kB Random Read Performance - Linux SAS

SAS, Raw I/O, 200 GB 5+1 RAID 5 volumes, "logen" I/O tool, "noop" Linux I/O elevator

Conclusion

Benefits of SCSI Referral Approach

- Capacity and Performance Scale Linearly
- No Application Server Configuration Required
- No Additional Hardware Required in SAN or Application Servers.
 - Cluster manager and virtualization done entirely on targets
- Application Servers "learn" Where Data Resides
 - They "relearn" location automatically if data is moved
 - No additional protocols to distribute and maintain volume maps or profiles
 - Target is free to move and reorganize data without informing application servers
- Straightforward RDAC and MPIO Extension for SCSI Referrals
 - New functionality fits naturally with existing responsibilities
 - < 1% of code modified for Linux RDAC prototype</p>
- Any File System Can Use Parallel Storage
- T10 Compatible
 - Planning T10 proposal to add SCSI Referrals

