

The Effectiveness of Deduplication on Virtual Machine Disk Images

Keren Jin & Ethan L. Miller Storage Systems Research Center University of California, Santa Cruz

SĪ

Motivation

- Virtualization is widely deployed for multiplexing services
 - Increases the demand for storage on a single node
- VM disk images have a lot of pages in common
 - Binaries shared between disk images
 - VM doesn't know the internal structure of the file system on the virtual disk
- Deduplication can find identical chunks in different VM disk images
 - Storage savings can range from 10–80% or more
- Which factors affect deduplication ratios?

Methodology overview

- VMs are downloaded from internet
 - Used freely-available images
 - Wide range of "pre-built" functionality
- VM disk images were chunked
 - Produced chunk lists for each image
- Deduplication experiments run against sets of chunk lists
 - Determined deduplication ratio and amounts of sharing
- Chunk-wise compression: deduplication + zip

Chunking

- Break VM disk images into chunks
 - Fixed-size chunking: constant chunk size.
 - Variable-size chunking: adjust Rabin fingerprint parameters to obtain desired size
 - Use secure hash of the chunk content for chunk ID
 - Zero-filled chunks are all identical
- Generate sorted list of chunks (easy to merge)
- A chunk store consists of chunk IDs from a group of VMs

Chunking VM disk images

- Disk image may be split into multiple image files
 - Some images use files ≤ 2 GB long
- Fixed-size chunking has boundary-shifting problem
 - Adding a small amount of data may shift content
 - Chunk size is large (4KB): "small amount of data" may be a disk block
- Chunk each image file separately, as each image file has VMM-dependent header

Chunking VM disk images

- Disk image may be split into multiple image files
 - Some images use files ≤ 2 GB long
- Fixed-size chunking has boundary-shifting problem
 - Adding a small amount of data may shift content
 - Chunk size is large (4KB): "small amount of data" may be a disk block
- Chunk each image file separately, as each image file has VMM-dependent header

Deduplication categories

- Find identical chunk IDs in a chunk store
- Deduplication ratio = 1-*stored_bytes/original_bytes*
- Chunk categories:
 - Stored 14/23; intra 3/23; inter 4/23; intra-inter 2/23

Homogeneous and heterogeneous VMs

- Effect of VM "similarity" on deduplication ratio
 - 14 Ubuntu 8.04 LTS
 - 13 various Unix and Linux instances
 - Variable-sized chunking: 1 KB
- Similar VMs: deduplication is very effective!
 - Slow marginal rate of increase
- Dissimilar VMs: less effective (but still helps!)
 - Marginal rate is higher
- Larger chunk size produces similar ratio and category distributions

2

4

1.0

0.9

category

Size 1

0.1

1.0

0.9

0.8 category

0.1

0.0

12

10

6

number of processed virtual machines

8

Baskin Engineering

Chunk categories in different operating systems

- More intra-inter sharing in Linux than BSD
 - Linux is more homogeneous
- Larger chunk sizes do not impact sharing ratio much
- Many small zero chunks in Linux
 - "Intrinsic" zero chunks due to file system or data files

Operating system groups Variable-length chunks, avg. 512B

Chunk count distribution

- CDF of chunks by count and total size from Linux chunk store
- Space utilization
 - 70% of chunks are unique
 - 20% of space is zero-filled chunks
- Chunk reuse
 - Most chunks are used only a few times

Smaller chunk sizes → higher deduplication ratios

- Less chance of the "avalanche effect" from rearranging chunks
- Fixed size chunking performs well
 - Much easier to implement in an online system
- Small zero chunks: caused by guest OS and apps
 Empty disk space would
 - cause larger chunks

Ubuntu Server: 6.10, 7.04, 7.10 and 8.04. Fixed and variable size chunking:

512, 1024, 2048, 4096 bytes

Effect of OS version

SSIC

- OS versions closer together deduplicate better
 - Consecutive releases have higher sharing
- Still a high degree of deduplication even between non-consecutive releases
 - Mature operating systems change little across versions

Ubuntu Server and Fedora: various versions Fixed and variable size chunking: 512 bytes

Effects of locale on deduplication

- Different locales deduplicate very well
 - Code remains the same
 - Distributions often include files for all languages
 - Config files determining locale simply select the right files for the language
- VM instances for different locales are highly similar

Ubuntu and Fedora server: English & French

Effects of OS lineage

- Deduplicate a wide range of distributions from two lineages
 - Debian
 - Red Hat
- Result: deduplication isn't as effective as for other cases
 - Source code may be similar
 - Binaries differ significantly between distributions

Virtual Machine Managers: VMware vs.VirtualBox

- Ubuntu Server 8.04.1
 images in VMware &
 VirtualBox
 - Sparse images
 - Flat images
- Different VMMs generate differently aligned headers
- Actual guest data are duplicated
 - Good dedup effectiveness for both sparse and flat VM disks

CCCC

SSI

Result: package installation

- Install two package sets in common application areas
 - Vary installation order
 - Dedup pairs of images
- Installation order has little effect on deduplication ratio
- Different package sets don't have much new data
 - Common dependencies appear in both installations

Packaging systems impact on deduplication effectiveness

- Compare packaging systems: install in same order for each experiment
 - deb (Ubuntu) vs. rpm (CentOS)
 - rpm (Fedora) vs. rpm (CentOS)
- Relatively little sharing: OS difference overwhelms package manager similarity

Does package removal matter? (SSTC

- Removed original packages
 - Removed packages typically leave data in image
- Image with package removed resembles image with package installed
- However, reverted image *differs* from original image
- Don't bother removing packages from deduplicated VM disks...

How effective is chunk compression?

- Compress with zip after deduplication
- Reduces space by 40%
 - Compression level matters little: small window size
- Larger chunks → higher compression
 - Tradeoff: longer time to compress and decompress

Ongoing work: spatial locality

- SSIC
- A *spatial locality* occurs if the same group of adjacent chunks appears multiple times in a chunk store
 - Don't count sub-localities if covered by super-localities.

Methodology

- Generate every possible locality by concatenating adjacent chunk IDs for specified length
- Deduplicate
- Remove covered sub-localities
- Detecting ALL localities is hard
 - Detecting certain lengths of localities is more tractable

Result: spatial locality

Baskin

Engineering

- Number of localities decreases sharply as locality length increases
- Long localities exist while their immediate predecessors and successors do not
- Different VM group might have different locality pattern
 - Working on showing this...

Ubuntu JeOS 8.04 (one instance) Fixed-size chunking, 1KB

Future work

Engineering

- Relationship between deduplication ratio and userrelated actions
 - Examine disk images after users have configured them
 - Expect less deduplication, but still effective, especially for similar operating systems
- Explore locality issues: will deduplication hurt sequential I/O?
- Implement deduplication on the fly in VM manager

Conclusions

- Deduplication is efficient for virtual machines, often saving 50–80%
 - More virtual machine instances → more savings
 - More homogeneity \rightarrow more savings
- Fixed size chunking works well!
- Deduplication works well across many differences
 - OS version
 - Package installations
 - Locale
 - Other differences reduce effectiveness more, but deduplication is still effective
- Integration with conventional data compression works, but limited by relatively small chunk sizes

Thanks!

Questions?

Research supported in part by Symantec & UC Micro

