

Zurich Research Laboratory

Write Amplification Analysis in Flash-Based Solid State Drives

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka

SYSTOR'09, Haifa, 2009

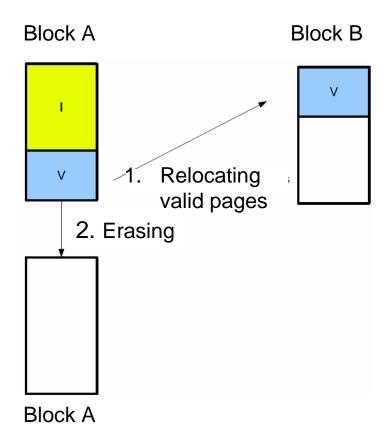
www.zurich.ibm.com

Outline

- Introduction
 - Context of the Problem
 - Related Work
- Write Amplification Analysis
 - Write Amplification Definition
 - Garbage Collection Framework
 - Windowed Greedy Reclaiming Policy
 - Analytical Model for Write Amplification Computation
- Results and Extensions
 - Simulation vs. Analysis
 - Impact of Separating Static Data from Dynamic Data
- Conclusions

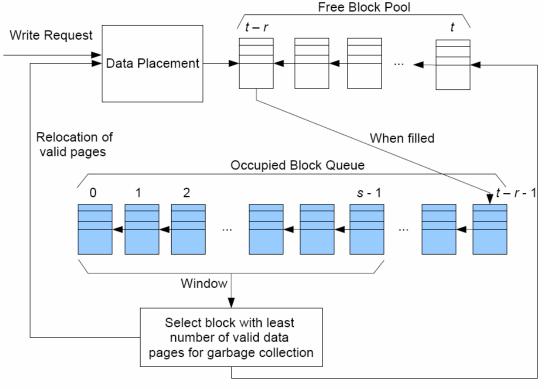
Context of Problem

- NAND flash memory characteristics
 - Organized in terms of blocks, each block consisting of typically 64 pages, 4 KiB each
 - Block must be erased before data can be written
 - A block is the elementary unit for erase operations that are slow
 - Reads and writes are processed in terms of pages
 - Each block has a limited program/erase cycle count. Typically, SLC sustains 10⁵, MLC ~ 10⁴ cycles
- Relocate-on-write is needed for high performance
 - Necessitates garbage collection, causing write amplification.
 - Write amplification is a critical factor affecting
 - Short random write performance
 - Endurance lifetime
- The impact of garbage collection on write amplification is influenced by
 - Level of over-provisioning
 - Choice of reclaiming policy
 - Type of workloads (we only consider uniformly-distributed random workload with 4KiB in this paper)


Related work

- Log-Structured Filesytem (LSF)
 - M. Rosenblum and J. K. Outsterhout (1992)
- Age-threshold algorithm for garbage collection in LSF
 - J. Menon and L. Stockmeyer (1998)
- Competitive analysis of wear-leveling algorithms
 - A. Ben-Aroya and S. Toledo (2006)
- Two comprehensive surveys:
 - Algorithms and data structures for flash memories by E. Gal and S. Toledo (2005)
 - Design tradeoffs for SSD performance by N. Agrawal, et al. (2008)
- Other works:
 - Real-time garbage collection, L.-P. Chang, et al. (2004)
 - Efficient static wear-leveling, Y.-H. Chang, et al. (2007)

Definitions and Notations


- Write Amplification
 - In a relocate-on-write system, write amplification, A, due to garbage collection, is defined as the average of actual number of page writes per user page write
 - −A is always greater than 1
- Write Amplification Factor
 - -Define A, as A-1. Namely A,=V/I
- Over-Provisioning
 - -Assume a raw storage capacity of t blocks of which the user can only use u blocks, the overprovisioning factor, O_f , is defined as $O_f = t/u$
 - -the spare factor, S_f , is defined as $S_f = (t u)/t$.

Garbage Collection Framework

- Garbage Collection Framework
 - -Data placement
 - Free block pool (size r)
 - Occupied block pool
 - -Reclaiming policy
- Windowed Greedy Reclaiming Policy
 - Configurable window size s to reduce complexity
 - Delaying garbage collection as much as possible, choosing r small
 - -Restricting selection to the oldest s (s < t r) blocks only

After successful erase, the block goes to Free Block Pool

Garbage collection example

Analytical Model for Write Amplification Computation (I)

1. Denote by p_0^* , p_1^* , ..., p_{np}^* the probability that the selected block has $0, 1, ..., n_p$ valid pages,

$$A_f = \frac{\sum_{k=0}^{n_p} k p_k^*}{n_p - \sum_{k=0}^{n_p} k p_k^*}.$$

2. Denote $p(V^{(j)} > k)$ the probability that the number of valid pages on block j, (0 <= j <= s-1), is greater than k

$$p(\forall_{j}V^{(j)} > k) = p(V^{(0)} > k, V^{(1)} > k, \cdots, V^{(s-1)} > k)$$

$$\cong p(V^{(0)} > k)p(V^{(1)} > k) \cdots$$

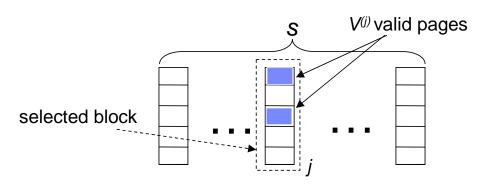
$$p(V^{(s-1)} > k)$$

$$= \prod_{j=0}^{s-1} p(V^{(j)} > k).$$

Notice that

$$p(\forall_j V^{(j)} > k - 1) = p_k^* + p_{k+1}^* + \dots + p_{n_p}^*,$$

so that one can compute p_k^* by


$$p_k^* = p(\forall_j V^{(j)} > k - 1) - p(\forall_j V^{(j)} > k),$$

for $k=1, ..., n_p - 1$. For k = 0,

$$p_0^* = 1 - p(\forall_j V^{(j)} > 0),$$

and for $k = n_p$,

$$p_{n_p}^* = p(\forall_j V^{(j)} > n_p - 1),$$

Analytical Model for Write Amplification Computation (II)

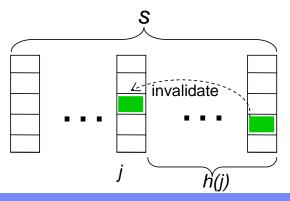
 Denote by p_j(m) the probability that the j-th block has m valid pages, then

$$p(V^{(j)} > k) = 1 - \sum_{m=0}^{k} p_j(m).$$

Consider p_{i,j}, the probability of *i*-th page on *j*-th block being valid,

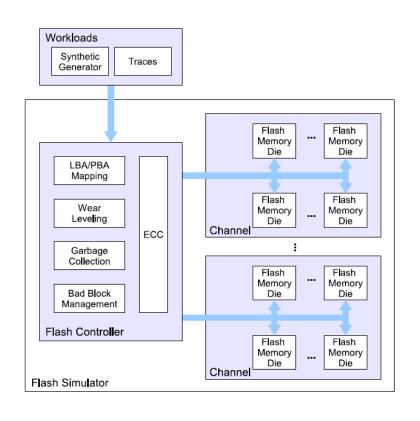
$$p_{i,j} = \left(1 - \frac{1}{un_p}\right)^{[h(j) + (n_p - i - 1)]}$$

$$\approx \left(1 - \frac{1}{un_p}\right)^{h(j)},$$

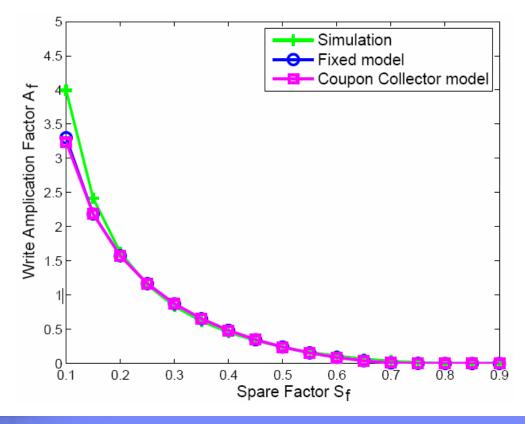

where h(j) is the number of pages being written after the j-th block up to the (t-r-1)-th block that could invalidate this page. Then $p_j(m)$ can be approximated by a binomial function

$$p_j(m) = \binom{n_p}{m} p_j^m (1 - p_j)^{n_p - m}$$

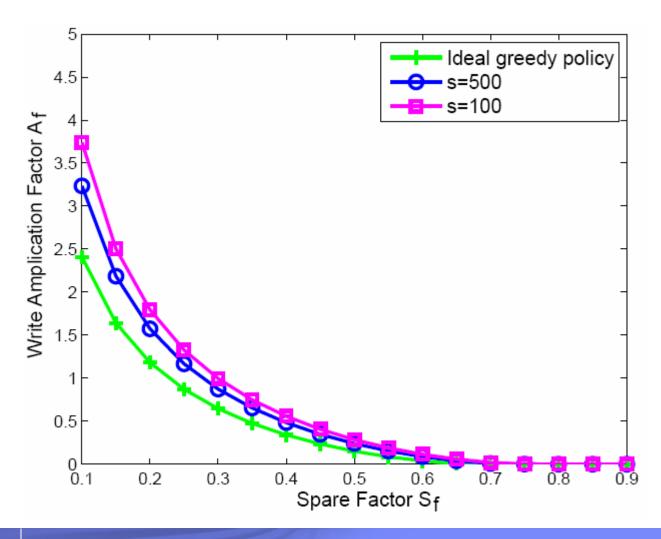
- Two models to evaluate h(j)
 - "fixed" model


$$h(j) = \begin{cases} (t - r - u)n_p & \text{if } j \le u - 1\\ (t - r - j)n_p & \text{otherwise.} \end{cases}$$

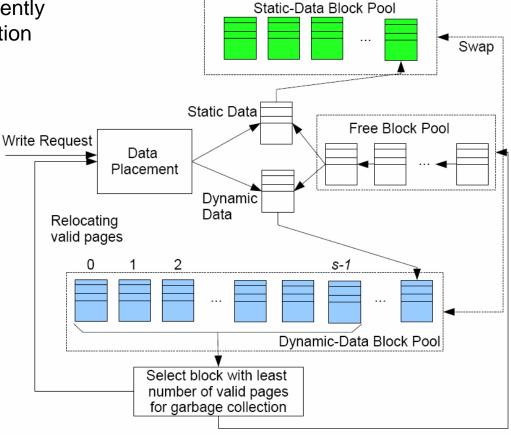
$$h(j) = \max \left(0, n_p(t - r - j - 1) - un_p\left(\left(1 - \frac{1}{un_p}\right)^{[(j+1)n_p]}\right)\right)$$



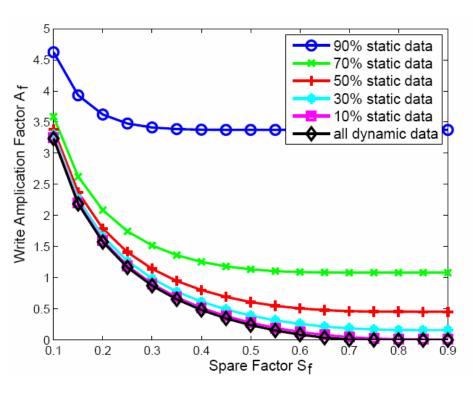
Simulation vs. Analysis



Parameter	Notation	Value
Total number of blocks	t	400000
Reserved number of blocks	r	10
Number of pages per block	n_p	64
Window size for applying	s	500
reclaiming policy		


Analytical Results for Various Window Sizes

Impact of Separating Static Data from Dynamic Data


- Suppose we have a perfect information that part of the data is getting updated frequently and the rest is never updated, the question is how to place these data: mixed or separate?
 - From wear-leveling point of view, mixed is desirable
 - however, write amplification suffers.

After successful erase, block goes to Free Block Pool

Comparison

90% static data
70% static data
50% static data
10% static data

Mixed data placement

Separate data placement

Conclusions

- We have considered write amplification of SSD
 - Based on windowed greedy garbage collection policy
- We have assessed the magnitude of write amplification by simulation and analysis
 - Demonstrated that write amplification decreases as over-provisioning increases
 - Separating static and dynamic data reduces write amplification
 - Analytic results match with simulation for sufficiently large window sizes and typical spare factors in SSDs
- Future work
 - Garbage collection and wear-leveling co-existence