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IO virtualization in Xen

Scheduler

FE

Drv

Native

Driver 1

Native

Driver 2

BE

Drv

Device

Model

DomUDom0

U

K

U

K

Xen

Pass thru
Devices

Shared

Memory



What is high-quality I/O virtualization

High-quality I/O virtualization

• Complete device semantics

• Full-feature set

• Close-to-native performance

• Real-time response

Gap of existing solutions

• Software approaches

— Intrinsic virtualization overhead

— Fail to catch up full-feature set

• Existing direct I/O solutions

— Ignore the fact of staggering variety of PC hardware, especially for client devices

— Lack of complete device semantics

— Ignorant about driver virtualization hole which prevents from wide adoption 

• Real time response is sacrificed



Driver (CPU) �������� device interaction

Interaction between device and driver:

•Driver programs device through register access

•Device notifies driver through interrupt

•Device could DMA for massive data movement

High quality I/O virtualization requires above semantics to be 
intact
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Preserving complete device semantics is a key to vast commodity devicesPreserving complete device semantics is a key to vast commodity devices



Preserving device semantics – State

Run-time device semantics

• Naturally preserved due to IO registers pass-through

Initial device semantics – risk of inconsistency

• A reclaimed device may have been set to an arbitrary state by previous user

• An in-fly transaction may access reclaimed memory

High quality I/O virtualization addresses inconsistency

• Initialize reclaimed device into known state as BIOS does at boot phase

• Device Function Level Reset (FLR)

— FLR is optional PCIe capability

• PCI link reset

— Upstream switch may not exist

• D0 � D3 � D0 power state transition

— Lead to state reset for most devices



Preserving device semantics – Interrupt

Interrupt sharing - compromise isolation

• Guest may assert/de-assert the shared interrupt line to 
arbitrary state, or even generate interrupt storm

High quality I/O virtualization embraces host MSI

• Dedicated vector(s) for device

• If guest is working in MSI mode

— Remap guest MSI capability to host MSI

• If guest is working in INTx mode

— Emulate virtual interrupt line state according to host MSI event. E.g:

• Asserting when host MSI fires

• De-asserting when EOI is issued



Preserving device semantics – Caching

Device may use ‘cache-bypass DMA’

• “No Snoop” type in DMA message

• Driver ensures cache coherency

— Flush cache before notifying device to start DMA etc.

Incorrect cache semantics may lead to device malfunction

High quality I/O virtualization ensures strict cache semantics, by 
propagating guest effective memory type to host 

• Derived from MTRR (indexed by physical address), and PAT 
(indexed by PAT/PCD/PWT bits in PTE)



Propagating guest effective memory type
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• Guest effective memory type is derived from guest MTRR/PAT

• Program shadow PTE (taking effective with host MTRR) to have 
same effective memory type

— Host MTRR is not changed for performance reason



Driver virtualization hole prevents direct I/O from 
wide adoption

Staggering variety of PC hardware

•Build-in device is originally designed to be bound with the 
platform

•Different HW features such as “No-Snoopy” control may be 

employed in different device

Drivers originally developed for native environment never 
foreseeing that they would run in virtual environment



Device resource in direct I/O

Sensitive device resources (SDR)

• Defined in public specification, e.g:

— Standard PCI resources such as BAR and function header type etc.

— Platform resource such as device BDF

•VMM trap-and-emulates SDR by public defined interfaces

Non-sensitive device resources  (NSDR)

•Device specific registers which VMM doesn’t need to know

• Simply pass through



Driver virtualization hole (DVH)

Drivers, accessing SDR bypassing virtualization layer, can lead 
to unexpected result in direct I/O

—This is coined as driver virtualization hole for direct I/O

Examples of DVH

• Acquiring SDRs without using standard interface defined in 
relevant public specifications

• Using sensitive device resources for operations other than 
those defined in relevant public specification

• Accessing platform specific resource that does not belong to 
the device



Acquiring SDRs

Acquiring SDRs without using standard interface

• VMM emulates SDRs by trapping at standard interface

• Acquiring SDRs using device specific knowledge won’t get 

right information reflecting the virtual platform

file “driver/net/e1000e/lib.c“file “diver/char/drm/radeon_cp.c”



Utilizing SDRs

Using SDRs for operations other than those defined in public 
specification

• For example, BDF is used to identify an PCI function, using it 

to specify MAC address of NIC could lead to mac address 

confliction in virtual environment

file “driver/net/e1000e/lib.c”



Accessing platform specific resource 

Accessing platform specific resource, which does not belong to 
the device, may lead to DVH

• Integrated device driver may directly access chipset specific 

registers

—Works in native environment

— But prevents from running virtually as direct I/O since the guest chipset 

may be different from physical one



Performance of high quality I/O virtualization

Performance of high-quality I/O virtualization

• Up to 2.86X of PV disk performance

• Up to 3.6X of PV network

— NIC saturates CPU at 2.6Gb/s for 10Gbit Ethernet.

— Utilizing VMDq technology can improve the bandwidth to 8.2Gb/s, but still 
suffer from CPU utilization and bandwidth.

• Within 3.76% of native for video

— PV graphic virtualization solution such as VMGL suffers from losing of 
full-feature set.



Disk direct I/O: Up to 2.86X of PV performance
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Network direct I/O: Up to 3.6X of PV performance
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Graphics direct I/O: Within 3.76% of native
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But, how about Audio?

Direct I/O doesn’t solve all the problems without real-time 
response

• Buffer overruns of input stream

— Lost of input data

• Buffer underruns of output stream

— Glitch



Benchmarking audio quality

Bandwidth is not a key concern, but buffer underrun/overrun is.

• Run Amarok music player as workload

• Instrument ALSA driver to measure buffer underrun with audio 
direct I/O

— Run UP guest with dom0 on top of Xen

• VCPUs of both domains are pinned to same pCPU

• A busy loop application in dom0 to compete CPU cycles

— Assign audio card to guest.

Xen credit scheduler focus on fairness

•BOOST state helps in reducing IO response latency, but not 
guaranteed.



With ½ (1:1) CPU reservation

Guest:dom0 scheduler weight  = 1:1
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Buffer underrun is observable with ½ CPU reservation

(Xen default scheduler)

Buffer underrun is observable with ½ CPU reservation

(Xen default scheduler)



With 1/17 (1:16) CPU reservation

Guest:dom0 scheduler weight  = 1:16
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Frequent buffer underruns with 1/17 CPU reservation

(Xen default scheduler)

Frequent buffer underruns with 1/17 CPU reservation

(Xen default scheduler)



Reducing scheduler tick to 1ms

Scheduler tick, from 10ms default to 1ms, reduces average buffer underrun frequency 
from 2.47 per second to 0.594 for 1/17 CPU reservation

Scheduler tick, from 10ms default to 1ms, reduces average buffer underrun frequency 
from 2.47 per second to 0.594 for 1/17 CPU reservation
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But…

• Smaller scheduler tick also means performance overhead…

• REAL_TIME VMM scheduler could meet both performance 

and response issue

— Schedule guest when the audio buffer is consumed, i.e. DMA interrupt.



REAL_TIME scheduler

Guest:dom0 scheduler weight  = 1:16
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Average audio buffer underrun frequency drops from average  of 2.47 in default credit 
scheduler to 0.506 for 1/17 CPU reservation

Average audio buffer underrun frequency drops from average  of 2.47 in default credit 
scheduler to 0.506 for 1/17 CPU reservation



Summarize

Our contribution toward high quality I/O virtualization:

• Preserving complete device semantics for direct I/O

• Avoiding driver virtualization hole

• Improving VMM scheduler for real-time response


