

The Python Programming Language

e Very popular dynamic programming language
combining object-oriented and scripting concepts

e Features a fully dynamic type system named 'duck
typing'’

e Compiled into bytecode and executed by an
Interpreter

e Known to be hundreds of times slower than C or Java

»

Data Flow Optimizations

e Data flow optimizations are a set of optimizations that
are known to be very effective.

e Typically, this set includes constant propagation,
common sub-expression elimination, algebraic
simplifications, copy propagation and dead code
elimination.

e In general, these optimizations create a more dense
code by simplifying expressions and removing dead
code.

Example of Dynamic Typing

>>> add(a, b): returna +b # define a new function
>>>add(1, 2) # integers

3

>>> add([1,2,3] , [4,5,6]) # lists

[1,2,3,4,5,6]

>>> add("hello", "world ") # strings

"hello world "

Failed Data Flow Optimizations

e The following algebraic simplification is valid for
integers : (a*2+ b*2) becomes (a+b) *2

e However, if a and b are strings, it is not valid.

(@*2 + b*2) ——— "aabb"

Optimizing Python

e Applying compiler optimizations is challenging due to
Python's dynamic typing system.

e In order to preserve the correctness of the original
program, special considerations must be taken even
when implementing the most standard optimizations.

Bytecode Optimization

e In this work, we developed optimizations which are
unique to dynamic languages.

e We dissasembeled the precompiled Python bytecode
and reconstructed into data-dependency trees and
optimize them.

e We recovered compiled bytecode files (.pyc files)
which contain no AST information.

e We have extended the standard data flow analysis
with specific rules to identify cases that are safe.

Bytecode Structure

e Python uses a stack-based bytecode which is
generated from the AST.

e The Python opcodes operate directly on the stack.

e A '‘BINARY_ADD' instruction, for example, pops two
items from the stack and pushes a single item,
which is the sum of the two original items.

e The add instruction tells the lower stack object to
call the internal ' __add_ ' method with the other
object as a parameter.

Bytecode Structure

LOAD_FAST 0//"a"
LOAD_FAST 1//"b"
BINARY_ADD

RETURN_VALUE

Python '‘Duck Typing' System
Person():
talk(self): print "/ am a person™
p = Person() # Create a new Person object
quack(): print"l'am a duck"
p.talk = quack # Override a function

>>>p_talk()

| am a duck l

Unsafe Optimizations and Side Effects

e Consider the following code:

for i in xrange(100):
sum += Xy

e In Java, CSE pass would evaluate "x*y" only once.

e However, in Python, a method could be overridden
by another method which has a side effect. This
method could potentially write a log file every time x is
multiplied by v.

e \We have no way of knowing in advance what x would
do when multiplied by v.

Loop Unrolling

e Loop unrolling is a well-known transformation.

e The first unrolling pass we implemented unrolls
numeric loops (xrange loops).

e The unrolling of the 'xrange' iterator is done by
changing the 'xrange’' constructor when it is created
in order to yield values in steps that are greater
than one.

e Then, the body of the loop is duplicated and
modified to accommodate the changes and execute
the next iteration.

xrange unrolling

Original loop :

for i in xrange(n):
2= bel it 2

The iteration range may
not be a multiplication
of the unroll parameter.

A 'tail' must finish the
last iterations.

Transformed loop:

m = n-(n % unroll)

unrolled loop body

for i in xrange(0,m-1,unroll):
Z=0"7 +1i*2
z=(i+1)*7 + (i+1)*2

loop talil
for 1 in xrange(m,n, 1):
Z=1"7T+1i*2

Complete Unrolling of Lists

e Using iterators is the 'native’ way to iterate over
data in Python.

e We have implemented two variants of unrolled
iterations.

e The first unroll pass is for lists of known size and
content. For example:

for x in [1,2,3,4]: print 1
print£<] » print 2
print 3

print 4

Unrolling Iterators of Unknown Size

_ f(bar):
f(bar): B

sum = 0 it=bar. __iter ()
for p in bar: » try:
sum +=p while(1):

p1 =it.next() ; i

p2 =it.next() ; i

p3 = it.next() ; i

p4 =it.next() ; i =

sum += p1+p2+p3+p4

Except Stoplteration:

handle talil if needed
based on value of i

il

ifi>2: ...

A WN -

Inlining of Functions

e Python function calls are time-consuming in
comparison to other compiled languages.

e Inlining is a transformation where a call to a
function or a method is replaced by its body, and
the called arguments are inserted into the body of
the loop.

e Each return call in the original inlined function is
translated into a 'store’ and ‘jump to end'’ set of

opcodes.

Inlining and Unrolling may assist
oneanother

e These transformations help to reduce the ‘type
uncertainty'.

e Inlined functions have access to type information
from the calling function. Parameters may become
constants.

e Complete unrolling of constant lists gives concrete
knowledge of type.

Example

func_2():
t =123

for func in [F1,F2,F3]:
func(t)

func_2():
t=123
-1(t)
-2(t)
~3(t)

User-Guided Optimizations

e Some of the possible optimizations are not type-
safe.

e We allow the user to specify which methods should
be optimized by Python 'decorators’ which are
source code annotations.

e This method can be further extended to indicate
other safety features.

@NumericCode
func(x, y):
return x*2 + y*2

Bytecode Optimizations

Basic Block Optimization CFG Optimizations
e Value propagation e Loop Unrolling:
e Constant propagation o Complete unroll
e Common sub-expression o lterator unroll

elimination o Range unroll

e Loop invariant o Random access
e Strength reduction transformation
e Memory optimizations e Method Inlining

o Load elimination
o Store elimination
e Global variable cache

Benckmarks

e The proposed optimizations were tested using

several benchmarks: Pystone, Pybench, Crypto, PyPy
and several micro tests.

e Results show significant improvement.

Pybench

M Before B Atter

pkups.NormallnstanceAttr

kups.SpeciallnstanceAttr
kups.NormalClassAttr
D .SpecialClassAttr
. ts.SmallLists
impleListManipul
s.CompareLongs

Impraoverment %

bers.CompareFlpatsint S
bers Compar?FIoats [————
Ngs.CreatestringsWithCon ===
ings.ComparelnternedStr e ———
i SRS C o mplexAth
. —
Arith.Si%wpIeLoR Arith,
A;{}E?'Ss'mp'?"%"; 0 t%tr/i\tmh I==-=s—
—
Arﬂh.gprﬁp%eln?egerurith I — -
0 1 2 3 4 5 16

Time(sec) Pystone PypyMD5 RSAMDS Pypy.SHA Crpt.Rijnd

Python disassembly

Technology Theme

def func(a,b,c): >>> dis.dis(func)
return a[b]*c + b*c + a[0] 2 0 LOAD_FAST
3 LOAD_FAST
6 BINARY_SUBSCR
7 LOAD_FAST

10 BINARY_MULTIPLY
11 LOAD_FAST

14 LOAD_FAST

17 BINARY_MULTIPLY
18 BINARY_ADD

19 LOAD_FAST

22 LOAD_CONST

25 BINARY_SUBSCR
26 BINARY_ADD

27 RETURN_VALUE

Inlining example

f(x): new_g()
v=5 sum = 0
if (x==9): for i in xrange(n):
return X + v $inline x = 7+i
return x*3 $local v=5

if ($inline_x==9):

a(): _inline_return=x+%local v
sum =0 *goto END_TAG
for i in xrange(n): _inline_return = x*3
sum += f(7+i) *goto END_TAG
return sum END_TAG:

sum += _inline_return
return sum

