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Modern Clusters
• Massively parallel � hundreds to tens of thousands 
omputingnodes
• O�-the-shelf 
omputing hardware
• Standard or proprietary inter
onne
t



Inter
onne
t StandardsIn�niBand
• Inherently oriented for 
lusters
• Used in apprx. 28% of top-500Ethernet
• Originally de�ned for general purpose 
ommuni
ation
• Cluster versions gradually adopt In�niBand-like properties
• Gigabit Ethernet used in apprx. 57% of top-500
• We used In�niBand as the platform, but expe
t results to beappli
able for 
luster networks in general



In�niBand Chara
teristi
sFabri
 properties1 Small bu�ers2 Virtual-output queueing
• "In�nite speedup" was assumed in simulations3 Lossless fabri
4 Oblivious, destination-based routing
• Together with 3, guarantees in-order pa
ket deliveryNetwork management1 Managed environment � known behavior of network elements2 Reliable 
ommuni
ation � failures are ex
eptional



Dire
t Damage of Contention
• If �ows didn't share links, all of them would be transmitted atline speed and we 
ould go home...
• ... in pra
ti
e, however, �ows 
ompete for resour
es, whi
hredu
es their transmission rates
• Apparently, the redu
tion of 
ontention through load-balan
ing(adaptive routing) should improve the performan
e



Congestion Spreading
• Adaptive routing may be bene�
ial, but is not a pana
eaExample
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• Outputs serve di�erentinputs in Round-Robin
• Regardless of bu�er size
• For equisized �ows, total
ompletion time is 25%above the optimum

• An appropriate rate 
ontrol 
an solve all above problems
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A Single Phase-Based Appli
ation
S
enario

• The 
luster is used by a single appli
ation that alternatesbetween 
omputation and 
ommuni
ation phases, separated bya global (to the appli
ation's nodes) barrier.
• At the beginning of a 
ommuni
ation phase, ea
h sour
eknows its destinations and the exa
t amount of data to betransferred.



Goals and Limitations
GoalUse adaptive routing and rate 
ontrol to minimize the length of the
ommuni
ation phase, whi
h is de�ned by the maximum
ompletion time among �ows (total 
ompletion time).Limitations1 No per-�ow state at swit
hes2 In-order pa
ket delivery



Routing Problem
• Seeking optimal routing usually leads to a variant of theintegral multi-
ommodity �ow problem, whi
h is NP-Complete[Even et al., 1975℄

⇒ Known pra
ti
al approa
hes to adaptive routing are heuristi




Flavors of Adaptive RoutingApproa
h Drawba
ks
• Pa
ket-level adaptation[Kim et al., 2006℄ • Breaks the in-order deliveryguarantee
• Prede�ned alternate paths[Lin et al., 2004℄ • Limited adaptivity, redu
ednumber of availableaddresses
• In
orporation in virtual
ir
uits (VC)[Dao et al., 1997℄ • Limited number of
onne
tions per swit
hOur Approa
hVC routing for in-order delivery, while retaining s
alability



Rate Control � TCPS
heme
• TCP 
ongestion 
ontrol s
hemes use a 
ongestion window to
ontrol the number of in-�ight pa
kets
• The size of the window is adjusted in response to 
olle
tedfeedba
k (RTT, pa
ket loss)Limitations
• Cluster networks have a small bandwidth-delay produ
t
• The maximum window size should be a few MTU pa
kets per�ow
• Even with window size of 1, 
ongestion spreading 
an o

ur!



Rate Control � In�niBand CCAS
heme  

Source 
CCT 

Index 

Timer 

Switch 

Packets 

Threshold 

Destination 
 HCA 

Marked 
Packets 
(FECN) 
Cong.  

Notification 
(BECN) Parameter Choi
e?

• [Santos et al., 2003, Yan et al., 2006℄ � analyti
al models
• [P�ster et al., 2005℄ � extensive simulations
• Our observations � tuning for topology and tra�
 pattern isrequired
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Our VC Routing
• Routing information is stored at ea
h swit
h on the path

• Default port number per destination (+alternate ports)
• A �xed number of routing entries, ea
h for a single �ow (notall �ows get an entry)

• Set up a path by adaptively routing the �ow's �rst pa
ket
• Use lo
al information for adaptation at swit
hes
• Use the default port when no free routing entries are present orwhen it is the best 
hoi
e
• In our simulations, the number of �ows traversing ea
h outputlink was used as the basis for the routing de
ision

• Route the rest of the �ow's pa
kets on the path in-order
• Tear down the path after �ow's last pa
ket



Fat Tree
Ideal fat tree Pra
ti
al 2-ary 3-tree-
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• We use k-ary n-tree topology in all our simulations
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Routing in k-ary n-tree
• Up-down routing
• Arbitrary as
ent
• The as
ent path uniquelydetermines the des
ent path
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Modi�ed k-ary n-tree
• Horizontal links are addedbetween swit
hes thatrepresent the same idealfat-tree node
• Routing in a 
onsistenthorizontal dire
tion isenabled at every level duringdes
ent
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Adaptive Routing in Modi�ed Tree � Simulation Setting
• Topology � modi�ed 16-ary, 3-tree (4096 end nodes) withvarying �width� of horizontal links
• Tra�
 � a single random permutation
• Routing � oblivious, adaptive in modi�ed tree
• Metri
 � maximum and average (over �ows) en
ountered
ongestion-
• Results averaged over 1000 runs



Adaptive Routing in Modi�ed Tree � Simulation Results
Results Summary
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Horizontal width of 2 gives thebest tradeo�:1 ∼ 10% additional ports2 ∼ 50% redu
tion of max3 ∼ 20% redu
tion of average



Adaptive Routing � Summary
• We presented a simple s
heme for adaptive routing that1 Preserves order of delivery2 Is s
alable (no limit on number of VCs)
• Our s
heme in 
onjun
tion with a small enri
hment of fattrees, o�ers a signi�
ant redu
tion in 
ongestion with lowoverheadRemarks1 Our approa
h is heuristi
. In some 
ases oblivious routing isoptimal, and adaptation may a
tually harm.2 From here on, we refer by "adaptive routing" to the
ombination of additional 
apa
ity (width=2) and our routings
heme.
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Single Appli
ation SetupDe�nitions1 wf � �ow weight, equal to its size df2 Wl � link weight, aggregate weight of its �ows3 Wf � maximum link weight en
ountered by �ow f4 W � maximum link weight in the network5 r(f ) � rate of �ow f6 r̄(f ) � normalized rate of f , r(f )wf
• Di�erent �ows (
ompute nodes) enter the 
ommuni
ationphase independently, approximately at the same time
• We assume long �ows, so all �ows are 
onsidered to start"simultaneously"



Seeking Optimal AssignmentGoal
• Minimize the total 
ompletion time
• A
hieved by maximization of minf {r̄(f )} = minf { r(f )df }Approa
h
• Initially, 
onsider non-weighted, �xed size �ows
• Let W = N; setting ∀f : r(f ) = 1N is optimal
• In fa
t, if Wf = Nf , ∀f : r(f ) = 1Nf is optimal as well
• For varying size �ows, simply repla
e r(f ) with r̄(f )



Single Appli
ation Assignment (SAA)
TheoremRate assignment r , for whi
h ∀f ∈ F : r(f ) = wfWf (or r̄(f ) = 1Wf ), isfeasible and guarantees the shortest 
ompletion in W units of timeRemarks1 Redu
ing maximum link weight by means of adaptive routingdire
tly improves the a
hievable 
ompletion time2 SAA does not provide maximality, i.e., there is possibly usable(but not useful!) residual 
apa
ity



SAA � Simulation Setting
• Topology � modi�ed 16-ary, 3-tree (4096 end nodes) withhorizontal width 2
• Tra�
 � superposition of a varying number of randompermutations, �xed length �ows
• Routing � oblivious in regular tree; adaptive in modi�ed tree
• Rate Control � no 
ontrol; SAA
• Metri
 � total 
ompletion time-
• Results averaged over 50 runs



SAA � Simulation Results
Results- Summary-
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• SAA ⇒ up to 13%improvement
• SAA+AR ⇒ up to 50%improvement
• AR without rate 
ontrol 
an
ause damage



Distributed Implementation of SAA
• Links store Wl valuesUpon �ow start at the beginning of a 
ommuni
ation phase
• The �ow sends a 
ontrol pa
ket to update relevant links aboutweight in
rease by wfPeriodi
ally (piggy-ba
ked on data pa
kets)
• The �ow sends a 
ontrol pa
ket to 
olle
t Wf , and setr(f ) = wfWfUpon �ow end
• The �ow sends a 
ontrol pa
ket to update relevant links aboutweight de
rease by wf
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Distributed SAA � Properties
• A �ow gets an initial allo
ation within one round trip
• After all �ows "announ
e" their start, it takes ea
h �ow asingle probing to a
quire the �nal rate (o

urs very fast ifpiggy-ba
ked on data pa
kets)
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Fluid Model � Problem
• The rate 
al
ulation 
onsiders link 
apa
ity only

• Impli
itly assuming that tra�
 has �uid nature
• In pra
ti
e dis
rete data pa
kets are used

• We 
ould rely on bu�ers for smoothing...
• But bu�ers in In�niBand are too small
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Closing the Gap
• Three fa
tors a�e
t the gap between �uid and dis
rete models:1 Bu�er size2 Inje
tion s
heme3 Pa
ket servi
e poli
y in swit
hes
• We propose an inje
tion s
heme that:

• Suppresses bursts (stronger than leaky bu
ket)
• Empiri
ally shown to realize 
al
ulated rates for realisti
 bu�ersize (under FCFS)
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Con
lusions1 Generi
 adaptive routing with in-order guarantees
• Appli
ation in modi�ed k-ary n-trees
• Up to 50% redu
tion in maximum 
ontention for randompermutations2 Expli
it rate 
al
ulation algorithm for single phase-basedappli
ation s
enario
• We show that rate 
ontrol is required to turn the redu
ed"topologi
al" 
ontention into an a
tual performan
e gain
• Additional rate 
al
ulation algorithm to be published elsewhere(independent �ows, multiple phase-based appli
ations)3 A pra
ti
al inje
tion s
heme that e�e
tively realizes thedesired rates even with small bu�ers



Dire
tions for Future Work
1 Adaptive routing

• Appli
ation in other topologies
• Generi
 framework for adaptation poli
ies2 Rate 
al
ulation
• Deeper quantitative examination of dynami
 properties of thealgorithm3 Testing on real-life ben
hmarks4 Implementation in In�niBand
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