
SYSTOR 2010

© 2010 IBM Corporation

Scalability Limitations when Running a 
Java Web Server on a Chip Multiprocessor

Takeshi Ogasawara

IBM Research – Tokyo



IBM Research – Tokyo

© 2010 IBM Corporation�

Summary of Talk

� We identified a performance scalability problem for a Java-based 
Web server in a real chip multiprocessor (CMP) machine.

– Long-lived objects triggered long garbage collections (GCs) 

– Long-lived objects is tightly linked with Web client connections

– Pause time of frequent long GC degrades the qualify of service 
(QoS) and performance scalability on many threads.

� We evaluated object pooling to address this problem.

– Implemented object pools with thread-affinity-based selection
• Thread local or global

– Recycling these long-lived objects improved performance 
scalability by 48% at 32 hardware threads



IBM Research – Tokyo

© 2010 IBM Corporation�

Background

� The number of hardware threads on a chip 
multiprocessor (CMP) is increasing in modern 
processors.

� It is critical for a Web server to take advantage of the 
numerous hardware threads to handle the increasing 
demands for Web services from large numbers of 
simultaneous clients.

� The performance of a Web server can scale well as 
the number of hardware threads increases.



IBM Research – Tokyo

© 2010 IBM Corporation�

Performance Scalability Problem of a Web Server in a CMP

� The throughput scaled poorly 
as the number of hardware 
threads was increased in a 
CMP.

– Threads are not blocked 
by resource contention.

� We believe that the increased 
number of hardware threads 
caused a change in the 
behavior of the Web server 
software.

0%

100%

200%

300%

400%

500%

0 4 8 12 16 20 24 28 32

H/W threads

R
el

at
iv

e 
P

er
fo

rm
an

ce

Ideal

40% CPU idle 
@32threads



IBM Research – Tokyo

© 2010 IBM Corporation�

QoS Failure Limited the Performance Scalability 

� What is happening when additional threads do not improve the 
throughput?

� QoS failure – The frequencies of the responses that could not 
meet the time criteria exceeded the limits.

– For a good server, most of the requests from Web clients 
should be responded within a given time limit.

– For example, the QoS criteria specify that 95% of the total 
requests must be responded within 3 seconds.



IBM Research – Tokyo

© 2010 IBM Corporation�

Source of QoS Failures 

� The number of responses that did 
not meet the time limit periodically 
increased.

� These spikes can be associated 
with the spikes in the GC pause 
time.

– Long GC pauses are a source 
of QoS failures.

� Next question – Why did such 
long GCs happen more often with 
additional hardware threads?

0

2

4

6

8

10

12

G
C

 p
au

se
 ti

m
e 

(s
ec

on
d)

Execution Time

G
C

 P
au

se
 (s

ec
)

T
im

e 
Li

m
it 

Fa
ilu

re
s

Execution Time



IBM Research – Tokyo

© 2010 IBM Corporation�

Source of Long GCs

� Long GC pauses were caused by Full GCs.
– Full GC is one of two GC types (minor and full) in generational GC.
– Full GC happens when there is no free space for long-lived objects.

� To identify what objects are long-lived, we profiled the lifetimes and classes of 
objects.

� Objects linked to the connections from clients were long-lived.

� To achieve better scalability, we should reduce the frequency of Full GCs by 
reducing the number of allocations of long-lived objects.



IBM Research – Tokyo

© 2010 IBM Corporation�

Object Pooling

� Conventional technology

� Not used for usual objects in modern JVMs

– Used in older JVMs to avoid slow allocations

– Can be used for recycling the OS resources (e.g., threads, 
DB connections, etc.)

� We used object pooling to reduce the number of long-lived 
objects.



IBM Research – Tokyo

© 2010 IBM Corporation�

Steps of Object Pools

1. Profile the lifetimes of objects

– Collect object allocations with their call stacks and their garbage-
collection

2. Find the objects that live long enough to be moved to the old space

– We assume that objects surviving many minor GCs are long-lived.

3. Create a object pool for each class of the objects

– Thread-local pool or global pool

4. Replace the code of ‘new’ with ‘getFromPool()’

5. Insert ‘returnToPool()’ when the objects are no longer used

– Done by hand



IBM Research – Tokyo

© 2010 IBM Corporation	


Thread Affinity of Pool Objects

� Thread affinity of a pool object – how 
often the same thread obtains and 
returns the pool objects

� Thread affinity is important for good 
performance and low memory footprint.

– For objects with high thread affinity, 
thread-local pools can avoid the cost of 
thread synchronization.

– For objects with low thread affinity, 
global pools can avoid imbalance in 
resource allocation among pools.

Pool

Thread

Object

Thread A

Object

Pool

Thread B

Object

100% Affinity

0% Affinity



IBM Research – Tokyo

© 2010 IBM Corporation		

Association between Object Lifetime and Thread Affinity

� Lifetime groups
– Long group

• Avg. – 126 seconds
• Linked to the connection 

times of the Web users

– Short group
• Avg. – < 1 usec

� Association between the lifetime 
groups and the thread affinity

– Long lifetime � <2% affinity
– Short lifetime � 100% affinity

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

Object Pool
Li

fe
ti

m
e 

of
 P

oo
le

 O
b

je
ct

s
(n

an
o

se
co

n
ds

)

Long lifetime

Short lifetime



IBM Research – Tokyo

© 2010 IBM Corporation	�

Experimental Environment

� A Java-based Web server 
running on a CMP machine

– A single JVM process 
executes most of the S/W 
stack.

– A CMP machine provides 
32 hardware threads.

HW: Sun Fire T2000 (32 hardware threads)

OS: Solaris Express 05/07

Java VM: HotSpot server VM 1.5.0_11

Java Web/Servlet Server: WebSphere 6.1.0

JSP Program: Ecommerce of SPECweb2005

Stack of H/W and S/W

JVM
Process

CMP



IBM Research – Tokyo

© 2010 IBM Corporation	�

Reduced GC Pauses and QoS Failures

0

2

4

6

8

10

12

G
C

 p
au

se
 ti

m
e 

(s
ec

on
d)

QoS Failures

0

2

4

6

8

10

12

G
C

 p
au

se
 ti

m
e 

(s
ec

o
nd

)

GC Pauses GC Pauses

Time Limit FailuresTime Limit Failures

Object
Pooling



IBM Research – Tokyo

© 2010 IBM Corporation	�

Improved Performance Scalability

0%

100%

200%

300%

400%

500%

600%

700%

0 4 8 12 16 20 24 28 32

H/W threads

R
el

at
iv

e 
P

er
fo

rm
an

ce

Pooling disabled Pooling enabled

48%
Up



IBM Research – Tokyo

© 2010 IBM Corporation	�

Conclusions

� We analyzed a scalability problem for a Java-based Web server 
in a real CMP machine.

– Long-lived objects triggered long GCs that degrade the QoS.

– The clients’ activities are tightly linked with the lifetimes of 
such objects.

� We evaluated object pooling to address this problem.

– Object pools with thread-affinity-based selection

– Recycling these long-lived objects improved the scalability by 
48%



IBM Research – Tokyo

© 2010 IBM Corporation	�

Backup



IBM Research – Tokyo

© 2010 IBM Corporation	�

Source of Long GCs

� Long GC pauses were caused by Full GCs.
– Full GC is one of two GC types (minor and full) in generational GC.
– Full GC happens when there is no free space for long-lived objects.

� To identify what objects are long-lived, we profiled the lifetimes and classes of 
objects.

� Objects that are linked to the connections from clients were long-lived.

� These objects will be observed in any server because they are independent of the 
internal design of a server.

� To achieve better scalability, we should reduce the frequency of Full GCs by 
reducing the number of allocations of long-lived objects.



IBM Research – Tokyo

© 2010 IBM Corporation	�

Another Reason of Reducing the GC Count –
GC Scales Poorly in a CMP

� We have more live objects that GC scans & copies 
with more exec units in a CMP.

� However, the scalability is limited because GC is 
memory-bound work.

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36

Fu
ll 

G
C

 p
au

se
 ti

m
e 

(s
ec

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 12 16 20 24 28 32 36

M
in

or
 G

C
 p

au
se

 ti
m

e 
(s

ec
)

Hardware Threads Hardware Threads

8x more units

Down to
only 1/2

M
in

or
 G

C
 P

au
se

Fu
ll 

G
C

 P
au

se8x more units

Down to 
only 1/3



IBM Research – Tokyo

© 2010 IBM Corporation	�

Reuse Ratio of Pool Objects

� Very high

– >94% on average



IBM Research – Tokyo

© 2010 IBM Corporation�


Other Approach – Mostly-Concurrent Mark-and-Sweep 
(CMS) Collector

� The CMS collector intends to 
reduce the GC pause time for 
Full GCs by running a 
collector thread concurrently.

� The QoS and the throughput 
were degraded.

– The pause time for Full 
GCs were reduced.

– But another pause (initial 
mark pause) was added.

More QoS failures �


