
Pushing the Boundaries 
of Distributed Storage Systems

Hank Levy
Department of Computer Science & Engineering

University of Washington

with:
Roxana Geambasu (UW, Columbia University)

Amit Levy, Yoshi Kohno, Arvind Krishnamurthy (UW)



Outline

• Introduction: Key/Value Stores, DHTs, etc.
• Vanish:  A Self-Destructing Data System
• Comet:  An Extensible Key/Value Store
• Conclusions/Summary



Outline

• Introduction: Key/Value Stores, DHTs, etc.
• Vanish:  A Self-Destructing Data System
• Comet:  An Extensible Key/Value Store
• Conclusions/Summary



Modern data and file sharing

• Over the last decade there has been a huge move to large-scale 
distributed data- and file-sharing systems

• Distributed Hash Tables (DHTs) have become a crucial 
mechanism for organizing scalable distributed Key/Value stores

• This move is impacting multiple environments:  from mobile 
devices to desktops to global peer-to-peer file-sharing systems 
to data centers to cloud computing



Intro to Distributed Hash Tables (DHTs)

• What’s a Hash Table? 
– Data structure that maps “keys” to “values”
– Extremely simple interface

• put(key, value)
• value = get(key)

• What’s a Distributed Hash Table (DHT)?
– Same thing, but the table is distributed across many hosts 
– There are tons of possible algorithms and protocols:

• CAN, Chord, Pastry, Tapestry, Kademlia, Symphony, …

• Every node manages a contiguous segment of a huge (e.g., 2160) key 
space.    Given a key, any node can route messages towards the node 
responsible for the key.

• This is managed at the application level.  



Why are DHTs interesting?

• Scalable
– Highly robust to churn in nodes and data
– Availability through data replication

• Efficient
– Lookup takes O(logN) time

• Self-organizing and decentralized
– No central point of control (or failure)

• Load balanced
– All nodes are created equal (mostly)



� A system composed of individually-owned computers that make 
a portion of their resources available directly to their peers 
without intermediary managed hosts or servers. [~wikipedia]

P2P properties:
� Huge scale – many millions of anonymous, autonomous nodes
� Geographic distribution – hundreds of countries
� Decentralization – individually-owned, no single point of trust
� Constant evolution – nodes constantly join and leave
� Examples – Kazaa, BitTorrent, Vuze, µTorrent, Napster, Skype, SETI@home 

Intro to Peer-To-Peer (P2P) Systems



DHTs and P2Ps

• DHTs provide a scalable, load-balanced, self-organizing structure

• DHTs are content addressable
– Easy way for clients to share content and find content

• E.g., key = hash(“Lady Gaga”); data = get (key)

• Many P2P systems are therefore organized as DHTs

• There has been a lot of work at University of Washington on DHTs, 
including OneSwarm, BitTyrant, P4P, Vanish, Comet, ….  

• In this talk I’m going to discuss two systems: 
– An (overly) challenging application (Vanish) [Usenix Security ‘09]

– An extension of DHTs for the future (Comet) [OSDI ‘10]



Outline

• Introduction: Key/Value Stores, DHTs, etc.
• Vanish:  A Self-Destructing Data System
• Comet:  An Extensible Key/Value Store
• Conclusions/Summary



The Problem:  Data Lives Forever

• Huge disks have eliminated the need to ever delete data
– Desktops store TBs of historical data
– Phones, USB drives store GBs of personal data in your pocket
– Data centers keep data forever

• The Web and cloud computing have made it impossible 
to delete data
– Users have given up control of their data
– Web services are highly replicated, archival stores
– Data has value, services want to mine that value



Data Lives Forever: Example, Email

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

You
Trusted 
friend

Sensitive 
email

ISP
Sensiti ve
Sensti ve

Sensiti ve

Sensiti ve
Sensti ve

Sensiti ve

Sensiti ve
Sensti ve

Sensiti ve

Sensiti ve
Sensti ve

Sensiti ve

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

� You want to delete the email, but:
� You don’t know where all the copies are
� You can’t be sure that all services will delete all copies 

(e.g., from backups and replicas)
� Even deleting your account doesn’t necessarily delete the 

data (e.g., Facebook)

A few days later…



You
Trusted 
friend

ISP
Sensiti ve
Sensti ve

Sensiti ve

Sensiti ve
Sensti ve

Sensiti ve

Archived Copies Can Resurface Years Later

Subpoena, 
hacking, …

This is sensitive s

This is sensitive s

This is   This is s

Rtndkgptjdghektl

Months or years later…

Retroactive attacks have become commonplace:

Hackers
Legal subpoenas
Misconfigurations
Laptops seized at borders
Device theft
Carelessness
…





The Retroactive Attack

Time

User tries 
to delete

Copies 
archived

Retroactive 
attack begins

Upload 
data months or years



You
Trusted 
friend

ISP

Why Not Rely On Encryption (e.g., PGP)?

��

� It’s possible for an attacker to get both encrypted data
and decryption key
� PGP keys are long-lived (stored on disks, backed up)



Why Not Rely On A Centralized Service?

Trust us: we’ll help you delete your data!

�������������	
�

� Huge trust concerns for relying on a centralized service



Question:
Can we empower users with control of data lifetime?

Answer:      
Self-destructing data



You
Trusted 
friend

Self-Destructing Data Model

1.  Until timeout, users can read original data
2.  After timeout, all copies become permanently unreadable

2.1 both online and offline copies
2.2 even for attackers who later obtain an archived copy & user keys
2.3 without requiring any explicit action by the user
2.4 without having to trust any centralized services

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

This is sensitive stuff.

ISP

Sensitive
email

Goals

self-destructing 
data object 
(w/timeout)



One possibility:  distributed trust systems
• Suppose we had access to millions of public “places” all around the world, 

where:
• we could “hide” some information (needle in a haystack)
• it would be impossible to find those locations later
• the places would “lose” or time out our data over time (churn)
• many independent trust domains

• How could we use this to create self-destructing data?

`
`



World-Wide 
DHT

One example:  DHTs (Vanish)

Vanish

Encapsulate 
(data, timeout)

Vanish Data Object
VDO = {C, L}

Secret 
Sharing

(M of N)

k1
k2

kN

...
k3

k1
k2
k3

kN

Ronit

C = EK(data)

L

K

k1

k3

kN

k2

Dafna



How Vanish Works: Data Decapsulation

��

Vanish

Encapsulate 
(data, timeout)

Ronit

C = EK(data)

World-Wide 
DHT

Vanish

Decapsulate 
(VDO = {C, L})

data

Dafna

Secret 
Sharing

(M of N)...k1

k3

kN

data = DK(C)

kN

k3

k1

L L

K

Secret 
Sharing

(M of N)
k2k2

Vanish Data Object
VDO = {C, L}



How data times out in the DHT

� The DHT loses key pieces over time
� Natural churn: nodes crash or leave the DHT
� Built-in timeout: DHT nodes purge data periodically

� Key loss makes all data copies permanently unreadable
� Random indexes / node IDs are useless in the future

��

World-Wide 
DHT

Vanish

Secret 
Sharing

(M of N)...k1

k3

kN

data = DK(C)

L

K
X

kN

k3

k1

X

X



Issues with DHTs for Vanish-like Apps

• We built the first Vanish prototype on Vuze – a commercial DHT 
with around 1.5M users [Geambasu et al. 2009].

• Vanish was really the first DHT application where security was a
concern.

• After that time, it was shown that Vuze was open to data 
scanning attacks [Wolchok et al. 2010].  

• We did a very detailed analysis of the threats and designed and 
deployed several changes to Vuze’s commercial DHT.



Security issues with Vuze and other DHTs

Vuze had two basic security issues:

1.  Overly eager replication mechanisms
- “push on join” sends copies of data to neighbors 
- aggressive 20-way replication every 30 minutes

2.  Lack of defense against Sybil attacks (where one node
tries to join the DHT as many different clients)



Changes to Vuze

• We designed and deployed many changes to Vuze for Vanish
– Addition of explicit parameterized timeout
– Removal of “push on join” replication
– New “conditional replication” mechanism

• Replicates only when needed
• Replicates only as much as needed

– New DHT ID assignment function
• Acts as admission control mechanism
• Limits number of clients joining from a single node 
• Limits number of clients joining from within a /16 network
• Requires attacker to control a very diverse network (e.g.,  

twenty /16 IP networks)
• Overall, raised the attack bar by many orders of magnitude



Extending the trick:  hierarchical secret sharing

K

http://wikipedia.com/vanish

http://cern.ch/vanish

`
`

http://inria.fr/vanish

http://cs.washington.edu/vanish

http://pgp.com/vanish

`
`Vuze DHT

`
`OpenDHT

`
`uTorrent

k1

k2

kN

...
k3

k11
k12

k21
k22…

…
Secret 

Sharing

(M of N)

• Keys are spread over multiple key/value storage systems

• No single system has enough keys to decrypt the data



Summary of self-deleting data
• Formidable challenges to privacy in the Web:

– Data lives forever
– Disclosures of data and keys have become commonplace

• Self-destructing data empowers users with lifetime control

• Our approach:
– Combines secret sharing with global-scale, distributed-trust, 

decentralized systems to achieve data destruction
– Can combine the best security properties of multiple systems to raise 

the bar against attack
– Still lots of research to do here



Summary (2)

• This work stressed existing DHT designs

• It required us to design, measure, and deploy changes to a 
commercial, million-node, global-scale distributed key/value 
store.

• The changes were conceptually simple;  but deploying them in a 
real system was hard.

• Question:  can we make life easier for the next person who 
walks this path?



Outline

• Introduction: Key/Value Stores, DHTs, etc.
• Vanish:  A Self-Destructing Data System
• Comet:  An Extensible Key/Value Store
• Conclusions/Summary



Use of Distributed Key/Value Stores

• Key/Value stores are increasingly popular both in P2P systems 
and within data centers, for many reasons, e.g.: scalability, 
availability, load balancing, etc.

Data centerP2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook
Vuze DHT

Vuze

uTorrent DHT

uTorrent



• Increasingly, key/value stores are shared by many apps
– Avoids per-app storage system deployment

• However, building apps atop today’s stores is challenging

Shared Key/Value Storage Services

Data center or cloudP2P

Amazon S3

AltexaPhoto 
Bucket

Jungle 
Disk

Vuze 
App

One-
Swar

m
Vanish

Vuze DHT



Challenge: Inflexible Key/Value Stores

• Applications have different (even conflicting) needs:
– Availability, security, performance, functionality

• But today’s key/value stores are one-size-fits-all

App 1 App 2 App 3

Key/value
store



• Vuze design caused problems for Vanish:
– Fixed 8-hour data timeout
– Overly aggressive replication, which hurts security

• Changes were simple, but deploying them was difficult:
– Needed to involve Vuze’s designer/implementor
– Long deployment cycle
– Hard to evaluate before                                         

deployment

Vanish was a motivating example

Vuze 
App Vanish

Vuze DHT

Vuze 
App Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Future 
app

Vuze 
App Vanish Future 

app

Vuze DHT

Question:

How can a key/value store support 
many applications with different needs?



Extensible (Active) Key/Value Stores

• Allow apps to customize the store’s functions
– Different data lifetimes
– Different numbers of replicas
– Different replication intervals

• Allow apps to define new functions
– Tracking popularity: data item counts the number of reads
– Access logging: data item logs readers’ IPs
– Adapting to context: data item returns different values to different 

requestors



Comet Design Philosophy

• We want an extensible key/value store

• But we want to keep it simple!
– Allow apps to inject tiny code fragments (10s of lines of code)
– Adding even a tiny amount of programmability into key/value stores can 

be extremely powerful
– We are not trying to be fully general

• Our Comet paper [OSDI ‘10] shows how to build extensible P2P DHTs
– We leverage our DHT experience to drive our design



Comet

• DHT that supports application-specific customizations

• Applications store active objects instead of passive values
– Active objects contain small code snippets that control their behavior in 

the DHT

App 1 App 2 App 3

Comet

Active object Comet node



Comet’s Goals

• Flexibility
– Support a wide variety of small, lightweight customizations

• Isolation and safety
– Limited knowledge, resource consumption, communication

• Lightweight
– Low overhead for hosting nodes



Active Storage Objects (ASOs)

• Instead of storing <key,value>, Comet stores <key, ASO>
• The ASO consists of data and code

– The data is the value
– The code is a set of handlers that are called on put/get

App 1 App 2 App 3

Comet

ASO

data

code

function onGet()
[…]

end



� Each replica keeps track of number of gets on an object

� The effect is powerful:
� Difficult to track object popularity in today’s DHTs
� Trivial to do so in Comet without DHT modifications

Simple ASO Example 

ASO

data

code

aso.value = “Hello Haifa!”

aso.getCount = 0

function onGet()

self.getCount = self.getCount + 1

return {self.value, self.getCount}

end



Local Store

Comet Architecture

Routing Substrate

K1 ASO1
ASO2K2

DHT Node

Tr
ad

iti
on

al
 

D
H

T
C

om
et

Active Runtime

External 
Interaction

Handler 
Invocation

Sandbox 
Policies

ASO1
data
code

ASO Extension API



The ASO Extension API

Applications Customizations

Vanish
Replication
Timeout
One-time values

Adeona
Password access
Access logging

P2P File Sharing 
Smart tracker
Recursive gets

P2P Twitter
Publish / subscribe
Hierarchical pub/sub

Measurement
Node lifetimes
Replica monitoring



The ASO Extension API

• Small yet powerful API for a wide variety of applications
– We built over a dozen application customizations

• We have explicitly chosen not to support:
– Sending arbitrary messages on the Internet
– Doing I/O operations
– Customizing routing …

Intercept  
accesses

Periodic 
Tasks

Host 
Interaction

DHT 
Interaction

onPut caller onTimer getSystemTime get

onGet caller getNodeIP put

onUpdate caller getNodeID lookup

getASOKey

deleteSelf



Restricting Active Storage Objects

• We restrict ASOs in three ways:
– Limited knowledge
– Limited resources
– Limited DHT interaction



Limited Knowledge
Requirement:
• It should be impossible for an ASO to access, e.g.:

– User’s files, local services, other ASOs on the node

Solution:
• We use a standard language sandbox

• ASOs are coded in a limited and lightweight language
– The basis is Lua, a popular language for application extensions

• Used for extending SimCity, World of Warcraft, Photoshop, …
– We modify Lua to eliminate any unneeded functions:

• E.g.: no process/thread creation, file I/O, sockets, signals, …
• ASO runtime is tiny (< 5,000 LOC)

– Could be even model-checked



Limited Resource Consumption

Requirement:
• Limit resource consumption by each ASO and by Comet

– CPU, memory, bandwidth

Solution:
• We modified the Lua interpreter to limit:

– Per-handler Lua bytecode instructions
– Per-ASO and per-handler memory allocation

• We rate-limit incoming and outgoing ASO requests
• We limit the number of ASOs stored on each node



Requirement:
• The DHT-interaction API must not be exploitable

– E.g.: prevent DDoS attacks against DHT nodes

Solution:
• Restrict who ASOs can talk to:

– ASOs can initiate interactions only with their own neighbors
– ASOs cannot send arbitrary network packets

Limited DHT Interaction



Comet Prototype

• We built Comet on top of Vuze and Lua
– We deployed experimental nodes on PlanetLab

• In the future, we hope to deploy at a large scale
– Vuze engineer is particularly interested in Comet for debugging and 

experimentation purposes



Applications Customization Lines of Code

Vanish
Security-enhanced replication 41
Flexible timeout 15
One-time values 15

Adeona
Password-based access 11
Access logging 22

P2P File Sharing
Smart Bittorrent tracker 43
Recursive gets* 9
Publish/subscribe 14

P2P Twitter
Hierarchical pub/sub* 20

Measurement
DHT-internal node lifetimes 41
Replica monitoring 21

Comet Applications

* Require signed ASOs (see paper)



Three Examples

1. Application-specific DHT customization
2. Context-aware storage object
3. Self-monitoring DHT



� Example: customize the replication scheme

� We have implemented the Vanish-specific replication
� Code is 41 lines in Lua

1. Application-Specific DHT Customization

function aso:selectReplicas(neighbors)

[...]

end

function aso:onTimer()

neighbors = comet.lookup()

replicas = self.selectReplicas(neighbors)

comet.put(self, replicas)

end



2. Context-Aware Storage Object

• Traditional distributed trackers return a randomized subset of the nodes

• Comet: a proximity-based distributed tracker 
– Peers put their IPs and Vivaldi coordinates at torrentID
– On get, the ASO computes and returns the set of  closest peers to 

the requestor

• ASO has 37 lines of Lua code



Proximity-Based Distributed Tracker

Comet tracker 

Random tracker



• Example: monitor a remote node’s neighbors
– Put a monitoring ASO that “pings” its neighbors periodically

• Useful for internal measurements of DHTs
– Provides additional visibility over external measurement (e.g., 

NAT/firewall traversal)

3. Self-Monitoring DHT

aso.neighbors = {}

function aso:onTimer()
neighbors = comet.lookup()
self.neighbors[comet.systemTime()] = neighbors

end



Example Measurement: Vuze Node 
Lifetimes

Vuze Node Lifetime (hours)

External measurement
Comet Internal measurement



Comet Summary

• Extensibility allows a shared storage system to support 
applications with different needs

• Comet is an extensible DHT that allows per-application 
customizations
– Limited interfaces, language sandboxing, and resource and 

communication limits
– Opens DHTs and key/value stores to a new set of stronger 

applications

• Extensibility is likely useful in data centers (e.g., S3):
– Assured delete
– Logging and forensics

– Storage location awareness
– Popularity



Outline

• Introduction: Key/Value Stores, DHTs, etc.
• Vanish:  A Self-Destructing Data System
• Comet:  An Extensible Key/Value Store
• Conclusions/Summary



Conclusions

• There will be a lot of key/value stores in our future
• There will be new applications generating new requirements
• These applications will be sharing a small number of key/value 

storage services (e.g., in data centers or the cloud)

• A small amount of programmability can:
1. greatly increase the generality and usability of simple 

key/value stores, and 
2. facilitate new classes of applications.



Questions?

• Thanks to:
– Roxana Geambasu, Amit Levy, Yoshi Kohno, Arvind 

Krishnamurthy (UW)
– Paul Gardner (Vuze Inc.)



Appendix



Expected App. Resource 
Consumption



Comet Throughput
A

ct
iv

e 
R

un
tim

e 
Th

ro
ug

hp
ut

 
(r

eq
ue

st
s/

s)

1

10

100

1K

10K

100K

1M

10M

0 10 100 1K 10K 100K 1
MASO Handler Complexity

(# Lua bytecode instructions)

Vuze’s per-node request rate

Throughput

Vuze’s throughput



Memory Footprint

��

Median Vuze Load Max Vuze Load



Comet Throughput

Vuze

Comet (null-handler)

Comet – 10K Lua instructions

Comet – 1M Lua instructions

Vuze per-node request rates



Related Work

• Extensible systems:
– Active networks, active messages, extensible OSes (e.g., 

SPIN), database triggers, extensible routers (e.g., Click), 
extensible Web crawlers (e.g., xCrawler)

– Comet has similar extensibility goals
– But the application domain is different: we build extensible 

key/value stores

• Object-oriented databases (e.g., Thor):
– Application domain, environment, and trust are different

• Bigtable Coprocessors:
– Similar in the idea of pushing code into the storage system
– Different in environment and trust



Related Work

• The Ephemerizer (next slide)
• Forward-secure encryption

– Protects against retroactive data disclosures if attacker obtains the 
current version of the user’s keys, but not if he gets keys from before

– Vanish protects even if attacker gets user’s keys from before (e.g., from 
full-disk backups systems via subpoenas)

• Key-insulated and intrusion-resilient systems
– Same as above + trusted agents or hardware

• Exposure-resilient crypto
– Assumes that attacker can only see parts of the key

• Self-destructing email services
– Trust issue: users may be reluctant to trust centralized services
– In general, only support one type of data (emails)



Vanish   Vs.  The Ephemerizer

Similarities:
• Same end-goal: make data self-destruct

Differences:
• Trust models:

– Vanish shuns trust in any centralized systems
– The Ephemerizer requires user to trust centralized services that take 

care of key management for him

• Deployability models:
– Vanish is readily deployable, as it “parasitically” piggybacks on 

existing distributed systems
– The Ephemerizer requires deployment of a dedicated service

• Evaluation and implementation levels:
– We built and evaluated Vanish



The ASO Sandbox

1. Limit ASO’s knowledge and access
– We use a language-based sandbox

• Based on Lua 
– A small, fast, scripting language for coding extensions
– Used for SimCity, Photoshop, World of Warcraft, ….

• We made the sandbox as small as possible (<5,000 LOC)
– We removed unneeded functions from Lua

2. Limit ASO’s resource consumption
– Limit per-handler bytecode instructions and memory
– Rate-limit incoming and outgoing ASO requests

3. Restrict ASO’s DHT interaction
– Prevent traffic amplification and DDoS attacks
– ASOs can talk only to their neighbors, no recursive requests



Closest Related Work

Active Networks:
• Similar motivation and goals

– We need extensibility; it’s hard to deploy changes to infrastructures that 
we don’t control

• Different application domains, hence different design
– Networks vs. storage systems
– The API, extensibility points, and sandboxing are different

DB Triggers and Bigtable Coprocessors:
• Similar extensibility goals
• Different environments and trust models, hence different design



Evaluation Highlights

• Small handler code
– 100s – 10K Lua bytecode instructions

• Small memory overhead
– Per-ASO memory consumption: 1KB – 100KB
– 27% overhead for maximum per-node load in Vuze today

• Small latency overhead
– Handler Comet delays: microseconds – milliseconds
– Irrelevant compared to Vuze’s lookup latencies (seconds)

• Irrelevant throughout overhead
– But Comet can handle over three orders of magnitude more requests 

than the current Vuze request rates



Comet Flexibility and Limitations

• Flexibility / security / lightweightness tradeoff:
– Our current design favors security and lightweightness
– Our design supports a variety of relatively powerful applications
– Still, more experience is needed to find the “right” tradeoff

• Example limitations:
– Internet network delay measurements (requires network)
– Persistent objects (require file I/O)
– Debugging DHT performance bottlenecks (requires CPU info)

• Signed ASOs can address limitations



Alternative Designs

• Smarter end applications (end-to-end argument)
– Sometimes works, but with efforts
– Other times, simply impossible

• Implement all of the required features in the DHT and expose a 
richer API
– Always possible, but one needs to predict all possible needs
– Debugging and experimentation are key Comet advantages

• Associate the code with keys instead of data
– Advantage over Comet: continue to trigger
– Disadvantage over Comet: multi-trigger semantics is unclear

• Overall, we believe that Comet is well suited for DHTs



“Active” S3: What might be different?

• At what level do we add extensibility?
– S3 abstractions are quite different from DHT abstractions
– Buckets, hierarchical index space, user accounts

• What’s the right flexibility/security tradeoff there?
– Must take into account the datacenter applications, which 

are very different from DHT applications

• What are the right sandboxing mechanisms?

• Possible first step:
– Look at Google CoProcessors and sandbox them



Vuze and Comet Workloads

• Vuze per-node workloads:
– Request rate: 30 – 100 requests/s
– Number of values: 400 – 30,000 values

• Comet per-handler workloads:
– Lua instructions: 100 – 10K
– Memory footprint: 1K – 100K

• Comet onTimer interval: 20 min



��

� Encapsulate text in any text area in self-destructing data

Firefox Plugin For Vanishing Web Data

Effect:

Vanish empowers users with
seamless control over the lifetime 

of their Web data



How it works

� Over the last year we have designed several 
possible solutions.

� All solutions use highly distributed storage systems 
with multiple trust domains, including:
� Distributed Hash Tables (DHTs)
� Collections of globally distributed services
� A hybrid approach with multiple types of storage 

systems, each with different security and trust properties

I’ll (try to �) describe one solution….using DHTs.



Retroactive Attack

� Discloses old copies of sensitive data months or years 
after data creation (and attempted deletion)

� Retroactive attacks have become commonplace:
� Hackers
� Subpoenas
� Misconfigurations
� Laptops seized                                                  

at borders
� Device theft
� Carelessness
� …



Roxana Geambasu

http://www.cs.washington.edu/homes/roxana/


