FlurryDB

A Dynamically Scalable Relational
Database with Virtual Machine
Cloning

Michael Mior and Eyal de Lara
University of Toronto

% Computer Science
\: UNIVERSITY OF TORONTO

Cluster Databases

* We use read-one write all (ROWA) replication
Send reads to any server instance
Send writes to all server instances

* Two-phase commit is required for writes

Problem

— p—
() o
(] je]
< o

800

600 by ka1

Aggregate CPU Demand (percent)

o N IMNMN lllII'NM
200 ; Ir || A
e\jl‘a: A {wy-. 7»4,,}» et] | g; WAPNEL F— .. ‘fMa UL S é'ﬁma)k r
0 TTTTTTTTTT T TIT T T TT T T T I T T T T T T T T T T I TT T T T T TTTTITTTT
0 12 24 36 48 60

Time (hours)

* Loads may fluctuate drastically over time
* Pay-as-you-go laaS clouds should be ideal

However

We want to adapt the size of the cluster to match the load

Problem

* Databases have large state and are hard to scale
* A complete copy may be required for new instances
* Copying large databases may take hours

Queries —

> > > >
copy boot catch add
data replica up replica

Replication

* Overprovisioning is necessary to maintain service

Solution - Virtual Machine
Fork

* Analogous to fork() for OS processes
* Clones start immediately
* State fetched on-demand
Page faults fetch the memory or disk page

This can reduce instantiation time
from minutes or hours to seconds

VM Fork

FlurryDB

* Use VM fork to provision new instances and
add elasticity to unmodified MySQL

* Making distributed commit cloning-aware to
handle in-flight transactions

Quer|es I —

>> >
clone add
replica

Replication

FlurryDB Challenges

1. Incorporate new worker into cluster

2. Preserve application semantics

Incorporate new worker

* Clone must connect to the load balancer

* Load balancer must begin sending
transactions to the clone

Preserve application

semantics
* Transactions may be in-progress at the

time of cloning
* Clone gets new IP address

* Doing nothing drops connections and
transaction status is unknown

P, A T P, A T

Solutions to consistency

[DBMS } [DBMS }

. Master VM | . Clone VM |

-

. Master VM | . CloneVM |

-

FlurryDB: Consistency beyond VM fork

Solution

Use a proxy which is aware of VM fork inside
the virtual machine to maintain the
database connection

Two-phase commit during
cloning

N e

Replica addition delay

* Update 10,000 rows concurrently

* Clone and measure replica addition delay in
two cases

Write barrier - wait for outstanding writes to
complete before cloning

FlurryDB - use double-proxying to allow
completion on the clone

Replica addition delay

T
S

S
o
|

——————————————————————————————— + ¢ Write barrier

™ FlurryDB

U
|

.

\ 4

- N N w w
U
|

u
|

Replica addition time (s)

[EY
o
]
-

(Va
|

o

Concurrent connections

Proxy overhead

* Measurement of large SELECT

transfer times shows ~5% drop in
bandwidth

* Reconnection to new servers ~10x
faster with no authentication

RUBBoS

* Simulates a news website such as Slashdot

* Users read, post, and comment on stories

* We run server at full capacity (25 clients)

* After 5 minutes, we clone to two servers and
double the number of clients

* Throughput in queries per second is
measured at the load balancer

RUBBOS Results

cloning at 300s

=
i

=
N

[T
o

(00]

(@)
|

Queries/s (thousands)

i
|

N
|

o

100 200 300 400 500
Time (s)

o

600

Summary

* FlurryDB adds elasticity to unmodified MySQL
by interposing a cloning-aware proxy

* VM fork handles most of the issues with
replica addition

* A proxy handles in-flight requests

* New replicas can be made available in
seconds while maintaining consistency

Future Work

* Experiment with varying consistency protocols
(e.g. master-slave, eventual consistency)

* Test scalability with larger numbers of clones
* Optimize virtual disk performance

* Provide support for transactional workloads

Questions?

Related Work

* “NoSQL” (perhaps more accurately, NoACID) systems
using eventual consistency or key-value data models
such as Cassandra or Dynamo

* Relational Cloud uses dynamic partitioning across a
cluster of MySQL/PostgreS instances

* Urgaonkar et al. use rapid changes in resource allocate
to provision a multi-tier Internet application

* Soundararajan et al. present dynamic replication policies
for scaling database servers

* HyPer uses process fork and memory snapshots to
enable a hybrid OLAP/OLTP workload

