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Cluster Databases

* We use read-one write all (ROWA) replication
Send reads to any server instance
Send writes to all server instances

* Two-phase commit is required for writes




Problem
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* Loads may fluctuate drastically over time
* Pay-as-you-go laaS clouds should be ideal

However

We want to adapt the size of the cluster to match the load




Problem

* Databases have large state and are hard to scale
* A complete copy may be required for new instances
* Copying large databases may take hours

Queries —

> > > >
copy boot catch add
data replica up replica

Replication

* Overprovisioning is necessary to maintain service




Solution - Virtual Machine
Fork

* Analogous to fork() for OS processes
* Clones start immediately
* State fetched on-demand
Page faults fetch the memory or disk page

This can reduce instantiation time
from minutes or hours to seconds




VM Fork




FlurryDB

* Use VM fork to provision new instances and
add elasticity to unmodified MySQL

* Making distributed commit cloning-aware to
handle in-flight transactions

Quer|es I —

>> >
clone add
replica

Replication




FlurryDB Challenges

1. Incorporate new worker into cluster

2. Preserve application semantics




Incorporate new worker

* Clone must connect to the load balancer

* Load balancer must begin sending
transactions to the clone




Preserve application

semantics
* Transactions may be in-progress at the

time of cloning
* Clone gets new IP address

* Doing nothing drops connections and
transaction status is unknown
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Solutions to consistency
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FlurryDB: Consistency beyond VM fork

Solution

Use a proxy which is aware of VM fork inside
the virtual machine to maintain the
database connection




Two-phase commit during
cloning
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Replica addition delay

* Update 10,000 rows concurrently

* Clone and measure replica addition delay in
two cases

Write barrier - wait for outstanding writes to
complete before cloning

FlurryDB - use double-proxying to allow
completion on the clone




Replica addition delay
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Proxy overhead

* Measurement of large SELECT

transfer times shows ~5% drop in
bandwidth

* Reconnection to new servers ~10x
faster with no authentication




RUBBoS

* Simulates a news website such as Slashdot

* Users read, post, and comment on stories

* We run server at full capacity (25 clients)

* After 5 minutes, we clone to two servers and
double the number of clients

* Throughput in queries per second is
measured at the load balancer




RUBBOS Results

cloning at 300s
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Summary

* FlurryDB adds elasticity to unmodified MySQL
by interposing a cloning-aware proxy

* VM fork handles most of the issues with
replica addition

* A proxy handles in-flight requests

* New replicas can be made available in
seconds while maintaining consistency




Future Work

* Experiment with varying consistency protocols
(e.g. master-slave, eventual consistency)

* Test scalability with larger numbers of clones
* Optimize virtual disk performance

* Provide support for transactional workloads




Questions?




Related Work

* “NoSQL” (perhaps more accurately, NoACID) systems
using eventual consistency or key-value data models
such as Cassandra or Dynamo

* Relational Cloud uses dynamic partitioning across a
cluster of MySQL/PostgreS instances

* Urgaonkar et al. use rapid changes in resource allocate
to provision a multi-tier Internet application

* Soundararajan et al. present dynamic replication policies
for scaling database servers

* HyPer uses process fork and memory snapshots to
enable a hybrid OLAP/OLTP workload




