
Avani Wildani 
Ethan Miller

UC Santa Cruz 

Efficiently Identifying Working 
Sets in Block 
I/O Streams

Lee Ward
 Sandia Labs

1



Key Ideas

• Grouping data is beneficial
• Even block I/O data can be grouped

• Grouping block data can lead to high level insights
• The systems research world needs more trace 

data for modern systems

2
2



Why Group? - Power 
Efficiency

• Reduce the number of spin-ups
• Reduce on-disk seek time if grouping is done 

within a single disk
• Better pre-fetching while a drive is spinning, 

reducing further spin-ups

3
3



Why Group? - Reliability

• The domains affected by a given failure event are 
constrained to the domains that used the groups 
that failed
• Better for one person to lose access to 80% of their 

data than for a hundred to lose 5%
• A project often idles while restoring from backup even if 

it only lost a few scattered files 
• Fewer spin-ups decrease probability of drive 

failure

4
4



Still Not Convinced?

• Priority: Working sets could be placed by desired 
performance, failure rate, etc

• Most files are still small
• Median file size = 2475 bytes on a UNIX server 
• Moving small files around into working sets could yield 

huge results
• Small files are frequently overwritten, but are they 

overwritten by the same programs?

5
5



What about Caching?

• Our system is designed to work on top of caching
• Once a working set is identified, the system can choose 

to pull the entire set into cache once the set is accessed
• This makes working sets a meta-cache
• More work to be done in this intersection

6
6



What about Clustering? 

• Tried unsupervised learning methods
• k-means

• Number of clusters is getting easier to predict
• Expectation maximization
• Agglomerative clustering

• Useless for our data
• Scattered, omnipresent writes to hot area distorted data
• Number of clusters changes

7
7



Grouping is hard (but great!)

• For semantically labeled data, we can an 
average power savings of 20% by grouping data

• Data is expensive to label
• Rich meta-data costs performance to collect
• Privacy concerns
• What if we just collect block level data?

8
8



Data at the Block Level

• Block level data: 
• block offset - location of block on physical disk
• timestamp - time of access

• Easy to collect
• Low performance overhead

• No domain knowledge needed

9
9



MSR Cambridge Data: 
Characteristics

• Total number of accesses: 1433655
• Total number of “unique” block offsets: 46718

• Unique offset-size pairs: 108793
• NTFS

10
10



MSR Cambridge Data: Access 
Locality

11

Reads and Writes Reads

• Workload is skewed by writes to a hot area

11



MSR Cambridge Data: 
Accesses

12

T
i
m
e
(s)

• Read/Write ratio of 10/90
•   Many writes are to the same blocks

Reads and Writes Reads

12



MSR Cambridge Data: Misc

• Available from SNIA
• Collected in 2007
• Comes from a multi-application research 

machine (rsrch_0)
• Covers 7 days of machine operation
• Cases of consecutive writes to the same blocks

13

128166372454818843,rsrch,0,Write,3154137088,4096,1175
128166372454818856,rsrch,0,Write,3154137088,4096,1161
128166372472318823,rsrch,0,Write,3154137088,4096,1130
128166372507631099,rsrch,0,Write,3154137088,4096,1227
128166372524817728,rsrch,0,Write,3154137088,4096,2034
128166372524818590,rsrch,0,Write,3154137088,4096,1172

13



Grouping at the Block 
Level 

• All you have is offset, timestamp pairs
• Offsets are likely to be accessed repeatedly
• Calculate similarity across accesses

14
14



• mxm matrix to calculate the distance between 
two offsets given all pairwise occurrences

• m = # unique block offsets
• Tk = |tik - tjk| 
• oi = offset i

Similarity - Distance Matrices

15
15



Similarity - Distance Lists

• Pick a threshold around an offset outside which 
similarities are not considered

• Combine lists of offset distances to get 
cumulative distance lists

16
16



Comparison Technique: 
Neighborhood Partitioning
• Calculate global threshold based on mean and 

standard deviation between accesses
• Apply threshold to determine if adjacent 

accesses should be in the same working set

17

Threshold:

Working Set 1 Working Set 2

Accesses:

17



Results: Neighborhood 
Partitioning, Read-Write

18
18



19

Results: Neighborhood 
Partitioning, Read-Only

19



• Calculate pairwise distances in spatial 
neighborhood n

• Calculate the average distance per pair
• Use average, scaled time/space distance to 

group files under different time/space thresholds.

Comparison Technique: 
Nearest Neighbor (weighted)

20

n = 3200 block offset

20



Results: Nearest Neighbor

21
21



Comparison Technique: Bag-
of-Edges

• Nodes = disk accesses
• Edge = two points have an                                    

acceptable distance between                                         
them (weight >= 0)

• Clique-cover seems right, but fails (and is NP-
Complete)

• Less Restrictive: Longest path per connected 
component (Also NP-Complete)
• Solution: Toss out weights; run shortest path over 

negated minimum spanning tree

22
22



Results: Bag-of-Edges

23
23



Validity

• Do our groupings stay consistent over time?
• Groups are resistant to most distance scaling factors
• Large jumps for levels or neighborhood distances
• Could be natural, correct, usage shift

24
24



• Group overlap
• Lots of methods to weight here

• Rand criterion
• R(G1,G2) = 

• a = # pairs in G1 and G2
• b = # pairs in G1 not in G2
• c = # pairs in G2 not in G1
• d = # pairs not in G1 and not in G2

• 0 ≤ R ≤ 1
• Mutual entropy

• Define probability with set intersection

Validity Methods

25
25



Next Steps

• Protocol analyzer to collect more block I/O data.
• Mixed-use educational storage systems
• HPC Systems

• Implement working set detection real-time
• Track power savings
• Track reliability savings
• Track bad working sets

26
26



Future Work

• Application Isolation
• Working sets -> Application accesses
• Goal: take a system and compartmentalize files that 

tend to be accessed by specific applications
• Duplicating files in storage is OK!

• Workload Characterization
• Can anything about groupings be transferred to different 

workloads with similar characteristics?
• What are these characteristics?

• Classify based on separability
• HPC vs. Enterprise vs. User-facing

27
27



Please send all of your data to:

• Avani: avani@soe.ucsc.edu
• Ethan: elm@soe.ucsc.edu
• Lee: lee@sandia.gov

28

Thanks!

28

mailto:avani@soe.ucsc.edu
mailto:avani@soe.ucsc.edu
mailto:lee@sandia.gov
mailto:lee@sandia.gov


BACKUP: Read Accesses

29
29



BACKUP: Comparison: Sliding 
Window

30

• Sliding window of 
nxn pairwise 
comparisons

30


