
Mark Silberstein, Technion 1

Energy-efficient acceleration 
of task dependency trees 

on CPU-GPU hybrids

Mark Silberstein - Technion
Naoya Maruyama – Tokyo Institute of Technology



Mark Silberstein, Technion 2

The case for heterogeneous 
hardware

FLOPs/J

Workloads

General
Purpose 
Processor

Accelerators



Mark Silberstein, Technion 3

The case for heterogeneity-aware 
software

FLOPs/J

Workloads

General
Purpose 
Processor

Accelerators

Slides idea: Uri Weiser



Mark Silberstein, Technion 4

The case for energy-aware 
task assignment

FLOPs/J

Workloads

CPU

GPU

Execute on 
GPU

Execute on 
CPU



Mark Silberstein, Technion 5

Experiment: GPU vs. CPU for the 
same task

1 sec

1.3 sec

CPU: AMD Phenom Quadcore
GPU: NVIDIA GTX285



Mark Silberstein, Technion 6

Outline

● Task dependency trees 
● Energy-efficient acceleration assignment 

problem
● Optimal algorithm 
● Evaluation on probabilistic networks workload



Mark Silberstein, Technion 7

Input: task dependency trees

● Algebraic expression 
evaluation

● Divide and conquer 
strategies

● Inference in 
probabilistic networks

Output

Input

AxB

 +C

Input

Dependency tree for
  AxB+C



Mark Silberstein, Technion 8

Goal: minimize power consumption

● Greedy assignment Output

Input

CPU=60
GPU=30

CPU=15
GPU=20

AxB

 +C

Input



Mark Silberstein, Technion 9

Goal: minimize power consumption

● Greedy assignment Output

Input

CPU=60
GPU=30

CPU=15
GPU=20

AxB

 +C

Input

Run on CPU

Run on GPU



Mark Silberstein, Technion 10

Accelerator

Accelerator RAM

Communication is not free!
CPU

RAM



Mark Silberstein, Technion 11

Accelerator

Accelerator RAM

Communication is not free!
CPU

RAM



Mark Silberstein, Technion 12

Greedy algorithm ignores 
communications

● Input and output should be 
moved to/from GPU

● Greedy (CPU-GPU) = 70J 
● Optimal (GPU-GPU)= 65J

Output

Input

CPU=60
GPU=30

CPU=15
GPU=20

5

15

5

AxB

 +C

Input

5



Mark Silberstein, Technion 13

Greedy algorithm ignores 
communications

● Input and output should be 
moved to/from GPU

● Greedy (CPU-GPU) = 70J 
● Optimal (GPU-GPU)= 65J

Output

Input

CPU=60
GPU=30

CPU=15
GPU=20

5

15

5

AxB

 +C

Input

5

Needed: communication-aware 
energy-optimized assignment



Mark Silberstein, Technion 14

How bad can it get?



Mark Silberstein, Technion 15

How bad can it get?

CPU=100
GPU=10

CPU=0.1
GPU=106

A

B

Input

106

C

CPU=106

GPU=0.1

As bad as we want...



Mark Silberstein, Technion 16

More formally ...

● Task dependency tree T(V,E,P,D)

V – tasks, E – data dependencies

Pv(i) – cost of execution on processor i 

D
v 
(i→j)– cost of data transfer between i and j 

● Goal: find  S: V → {CPU:GPU} to minimize

∑v∈V
(P v [S (v )]+∑w∈N v

Dv [S (w)→ S (v)])

Execution of task v Communications to task v



Mark Silberstein, Technion 17

Appears to be NP-hard...

● Resembles communication-aware parallel 
scheduling of DAGs on multiprocessors

● NP-hard even for 
● dependency trees, 
● for fixed number of processors, 
● with non-unit execution and communication costs



Mark Silberstein, Technion 18

Appears to be NP-hard...

● Resembles communication-aware parallel 
scheduling of DAGs on multiprocessors

● NP-hard even for 
● dependency trees, 
● for fixed number of processors, 
● with non-unit execution and communication costs

But is it really the same problem?



Mark Silberstein, Technion 19

Energy-efficient architecture

CPU-intensive workload

Accelerator

Accelerator RAM

CPU

RAM



Mark Silberstein, Technion 20

Energy-efficient architecture

Accelerator-intensive workload

Accelerator

Accelerator RAM

CPU

RAM



Mark Silberstein, Technion 21

Example – NVIDIA OPTIMUS

From NVIDIA OPTIMUS White Paper



Mark Silberstein, Technion 22

Energy optimization is easier!

● Assume we found minimum-energy schedule
● Two executions are energy-equivalent:

● All processors are used concurrently
● Processors used one-at-a-time, unused are 

powered off 



Mark Silberstein, Technion 23

Energy optimization is easier!

● Assume we found minimum-energy schedule
● Two executions are energy-equivalent:

● All processors are used concurrently
● Processors used one-at-a-time, unused are 

powered off 

● We refer to this problem as

Energy-efficient acceleration assignment
● Runtime becomes secondary optimization



Mark Silberstein, Technion 24

Dynamic programming

● Observation: assignment in one branch does 
not affect the assignment in another

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants



Mark Silberstein, Technion 25

Dynamic programming

● Observation: assignment in one branch does 
not affect the assignment in another

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants

● Backward step:
● Traverse tree from the root to the leaves
● Fix the best cost given the root on  a CPU



Mark Silberstein, Technion 26

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

A B

C

5

2015



Mark Silberstein, Technion 27

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

A B

C

5

2015

15 20



Mark Silberstein, Technion 28

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

A B

C

5

2015

15 2020+10 15+10



Mark Silberstein, Technion 29

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

A B

C

5

2015

15 20

15

20+10 15+10

20

Best Subtree Cost
if C is on CPU

Best Subtree Cost  
if C is on GPU



Mark Silberstein, Technion 30

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

A B

C

5

2015

15 20

15

20+10 15+10

20

30 20

25

2030

20+5 30+5

20



Mark Silberstein, Technion 31

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

15

15+25+10   
  

20

A B

C

15

5

2015

20+10 15+10

20

30 20

25

2030

20+5 30+5

20

Cost of  subtree
rooted at C 

if C is on CPU



Mark Silberstein, Technion 32

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

15

15+25+10   
  

20

A B

C

15

5

2015

20+10 15+10

20

20+20+40

30 20

25

2030

20+5 30+5

20

Cost of  subtree
rooted at C 

if C is on GPU



Mark Silberstein, Technion 33

 Forward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

15

15+25+10   
  

20

A B

C

15

50

5

2015

20+10 15+10

20

20+20+40

88

30 20

25

2030

20+5 30+5

20

Cost of  subtree
including data

transfer



Mark Silberstein, Technion 34

 Backward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10
GPU=40

15

15+25+10   
  

20

A B

C

15

50

5

2015

20+10 15+10

20

20+20+40

88

30 20

25

2030

20+5 30+5

20

Choose the best
path



Mark Silberstein, Technion 35

 Backward step
Outut
CPU

8

CPU=15
GPU=20

CPU=30
GPU=20

10

CPU=10

15

15+25+10   
  

A B

C

15

50

5

2015

20+10 30

25

2030

20+5



Mark Silberstein, Technion 36

 Backward step
Outut
CPU

8

CPU=15 CPU=30
GPU=20

10

CPU=10

15

15+25+10   
  

A B

C

15

50

5

15

30

25

2030

20+5



Mark Silberstein, Technion 37

 Backward step
Outut
CPU

8

CPU=15
GPU=20

10

CPU=10

15

15+25+10   
  

A B

C

15

50

5

15

25

20

20+5



Mark Silberstein, Technion 38

Final assignment
Outut
CPU

8

CPU=15
GPU=20

10

CPU=10

A B

C

5



Mark Silberstein, Technion 39

Final assignment
Outut
CPU

8

CPU=15
GPU=20

10

CPU=10

A B

C

5

May run in 
parallel



Mark Silberstein, Technion 40

Dynamic programming

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants

● Backward step:
● Traverse tree from the root to the leaves
● Fix the best cost given the root on  a CPU

● Complexity: O(#Tasks x #Processors)



Mark Silberstein, Technion 41

Experiments

● 6 task dependency trees
● Source: inference in large probabilistic networks

● Used in genetic analysis

● GPU:  NVIDIA GTX285
● CPU: Quadcore AMD Phenom 9500

Tasks CPU time per 
task (ms)

GPU time per 
task (ms)

Speedup per 
task

Transfer sizes 
between  tasks 
(KB)

1194 (0.01 / 11 / 667) (0.2 / 0.5 / 15.9) 0.06 / 7.7 / 104 0.07 / 633 / 12K



Mark Silberstein, Technion 42

Methodology
● Predict the energy spent on each task and transfer

● Runtime estimate x observed power consumption
● Transfer time estimate x observed power consumption

● Run the assignment algorithm 
● Hybrid-greedy, only-GPU, only-CPU, exact

● Given the schedule, measure the actual execution 
and data transfer time of all tasks in the tree 

● Scale by the observed power consumption



Mark Silberstein, Technion 43

Hybrid strategy pays off

0



Mark Silberstein, Technion 44

Hybrid strategy pays off

Memory transfer times are comparable 
with the task execution times

0



Mark Silberstein, Technion 45

Hybrid greedy assigns
 fewer tasks to GPU

Total tasks GPU tasks by 
Optimal

GPU tasks by 
Greedy

390  25 14

529 41 28

268 86 62

595 139 111

1194 301 230

505 46 21



Mark Silberstein, Technion 46

Optimal algorithm avoids islands



Mark Silberstein, Technion 47

Optimal algorithm avoids islands



Mark Silberstein, Technion 48

Runtime optimization
● The algorithm can be used to improve runtime

● Exploiting the parallelism available in the schedule 

0



Mark Silberstein, Technion 49

Insights

● Communication power cost may hinder GPU 
performance benefits

● “Power off” assumption simplifies scheduling 
algorithms

● Algorithm utility depends on the relative amount 
of communications



Mark Silberstein, Technion 50

Future work

● Use as a part of a heuristic for DAG 
● Joint runtime – power optimization
● Power measurements on real hardware
● Application to multicores



FHTE
4/26/11

51

The High Cost of Data Movement

From the keynote IPDPS11, Prof. Dally, Stanford
20mm

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip 
link

28nm

256-bit
buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ

Its not about the FLOPS
Its about data movement



Mark Silberstein, Technion 52

Thank you!


