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The case for heterogeneous 
hardware

FLOPs/J

Workloads

General
Purpose 
Processor

Accelerators



Mark Silberstein, Technion 3
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Slides idea: Uri Weiser
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The case for energy-aware 
task assignment
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Experiment: GPU vs. CPU for the 
same task

1 sec

1.3 sec

CPU: AMD Phenom Quadcore
GPU: NVIDIA GTX285
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Outline

● Task dependency trees 
● Energy-efficient acceleration assignment 

problem
● Optimal algorithm 
● Evaluation on probabilistic networks workload
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Input: task dependency trees

● Algebraic expression 
evaluation

● Divide and conquer 
strategies

● Inference in 
probabilistic networks
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Goal: minimize power consumption

● Greedy assignment Output
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Goal: minimize power consumption

● Greedy assignment Output
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Accelerator

Accelerator RAM

Communication is not free!
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Greedy algorithm ignores 
communications

● Input and output should be 
moved to/from GPU

● Greedy (CPU-GPU) = 70J 
● Optimal (GPU-GPU)= 65J
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Greedy algorithm ignores 
communications

● Input and output should be 
moved to/from GPU

● Greedy (CPU-GPU) = 70J 
● Optimal (GPU-GPU)= 65J
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Needed: communication-aware 
energy-optimized assignment
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How bad can it get?
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How bad can it get?

CPU=100
GPU=10

CPU=0.1
GPU=106

A

B

Input

106

C

CPU=106

GPU=0.1

As bad as we want...
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More formally ...

● Task dependency tree T(V,E,P,D)

V – tasks, E – data dependencies

Pv(i) – cost of execution on processor i 

D
v 
(i→j)– cost of data transfer between i and j 

● Goal: find  S: V → {CPU:GPU} to minimize

∑v∈V
(P v [S (v )]+∑w∈N v

Dv [S (w)→ S (v)])

Execution of task v Communications to task v
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Appears to be NP-hard...

● Resembles communication-aware parallel 
scheduling of DAGs on multiprocessors

● NP-hard even for 
● dependency trees, 
● for fixed number of processors, 
● with non-unit execution and communication costs
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Appears to be NP-hard...

● Resembles communication-aware parallel 
scheduling of DAGs on multiprocessors

● NP-hard even for 
● dependency trees, 
● for fixed number of processors, 
● with non-unit execution and communication costs

But is it really the same problem?



Mark Silberstein, Technion 19

Energy-efficient architecture

CPU-intensive workload
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Energy-efficient architecture

Accelerator-intensive workload
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Example – NVIDIA OPTIMUS

From NVIDIA OPTIMUS White Paper
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Energy optimization is easier!

● Assume we found minimum-energy schedule
● Two executions are energy-equivalent:

● All processors are used concurrently
● Processors used one-at-a-time, unused are 

powered off 
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Energy optimization is easier!

● Assume we found minimum-energy schedule
● Two executions are energy-equivalent:

● All processors are used concurrently
● Processors used one-at-a-time, unused are 

powered off 

● We refer to this problem as

Energy-efficient acceleration assignment
● Runtime becomes secondary optimization
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Dynamic programming

● Observation: assignment in one branch does 
not affect the assignment in another

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants



Mark Silberstein, Technion 25

Dynamic programming

● Observation: assignment in one branch does 
not affect the assignment in another

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants

● Backward step:
● Traverse tree from the root to the leaves
● Fix the best cost given the root on  a CPU
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Final assignment
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Final assignment
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Dynamic programming

● Forward step:
● Traverse tree from the leaves to the root
● Update the best costs for node execution on CPU 

and GPU, given best costs of its descendants

● Backward step:
● Traverse tree from the root to the leaves
● Fix the best cost given the root on  a CPU

● Complexity: O(#Tasks x #Processors)
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Experiments

● 6 task dependency trees
● Source: inference in large probabilistic networks

● Used in genetic analysis

● GPU:  NVIDIA GTX285
● CPU: Quadcore AMD Phenom 9500

Tasks CPU time per 
task (ms)

GPU time per 
task (ms)

Speedup per 
task

Transfer sizes 
between  tasks 
(KB)

1194 (0.01 / 11 / 667) (0.2 / 0.5 / 15.9) 0.06 / 7.7 / 104 0.07 / 633 / 12K
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Methodology
● Predict the energy spent on each task and transfer

● Runtime estimate x observed power consumption
● Transfer time estimate x observed power consumption

● Run the assignment algorithm 
● Hybrid-greedy, only-GPU, only-CPU, exact

● Given the schedule, measure the actual execution 
and data transfer time of all tasks in the tree 

● Scale by the observed power consumption
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Hybrid strategy pays off

0
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Hybrid strategy pays off

Memory transfer times are comparable 
with the task execution times

0
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Hybrid greedy assigns
 fewer tasks to GPU

Total tasks GPU tasks by 
Optimal

GPU tasks by 
Greedy

390  25 14

529 41 28

268 86 62

595 139 111

1194 301 230

505 46 21
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Optimal algorithm avoids islands
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Optimal algorithm avoids islands
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Runtime optimization
● The algorithm can be used to improve runtime

● Exploiting the parallelism available in the schedule 

0
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Insights

● Communication power cost may hinder GPU 
performance benefits

● “Power off” assumption simplifies scheduling 
algorithms

● Algorithm utility depends on the relative amount 
of communications
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Future work

● Use as a part of a heuristic for DAG 
● Joint runtime – power optimization
● Power measurements on real hardware
● Application to multicores
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The High Cost of Data Movement

From the keynote IPDPS11, Prof. Dally, Stanford
20mm

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip 
link

28nm

256-bit
buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM

50 pJ

Its not about the FLOPS
Its about data movement
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Thank you!


