
Coping With Context

Switches in Lock-Based STMs

Yoav Cohen
Joint with

Yehuda Afek and Adam Morrison

Tel Aviv University

Agenda

Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Software Transactional Memory

 Programmers define blocks of code as transactions:

 Transactions take effect atomically

Simplicity of Global Clock with performance of Fine-

Grained Locking

atomic {
 <code block>
}

Lock-Based STMs
Basic design:

Map

Array of
Versioned Locks

Application
Memory

Version = Lock Bit

Incrementing a Shared Counter

counter=12

atomic {
 int c = counter;
 c = c+1;
 counter = c;
}

counter=13
Start TX

Read
counter

Take
Lock
Commit

Start
TX

Read
counter

Take
Lock

Write
counter

Release
Lock

Rollback

= V = 0 0 V = 0 1 V = 1 0

Context Switches

Threads may be switched-out when:

 # S/W threads > #H/W threads

 Interrupts

 Page faults

Q: A thread with a lock is switched out. What

happens?

A: Transactions that need this lock abort or wait

The Result: Throughput Degradation

Deuce TL2
running on Intel
i7 with 8 hyper
threads More context switches 

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

The Solution: Lock Stealing

Instead of waiting for a switched-out
lock, steal it:

 Abort the switched-out transaction

 Take the lock

Lock Stealing

 Status field per thread:

 RUNNING, COMMITTED or ABORTED

 Enhanced locks:

Version = Lock Bit Owner Owner L. Clock

Thread Id of
Lock Owner

Thread Local
Counter

The pair <Owner, Local Clock> is a
unique transaction identifier

= Status Local Clock

Lock Stealing

 <T1,24> aborts <T2,10>:

 CAS(T2, <RUNNING,10>, <ABORTED,10>)

 <T1,24> steals L from <T2,10>:

 CAS(Lock,

 <l=1, v=2, owner=T2, local_clock=10>,

 <l=1, v=2, owner=T1, local_clock=24>)

Does It Always Work?

Q: Can we always do this trick?

A: Nope. When a transaction is COMMITTED,
it can’t be aborted.

Transaction Lifecycle

Start
Run
TX

Try
Commit

Update
Memory

Release
Locks

Roll
Back

Window of
Abort-ability

Window of
Un-

Abortability

}

} Take
Locks

Brief Summary

 Context switches cause throughput
degradation

 Because switched out locks result in lots of
aborts

 New approach: instead of waiting for locks,
abort other and steal the lock

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Lock Stealing for TL2

 Based on Deuce

 An open-source Java STM framework

 Added Contention Management support:

 Upon conflict contention manager invoked

 Decides what to do:

 Restart current transaction

Wait for lock

 Abort other transaction and steal lock

Lock Stealing for TL2

 Lock-Waiting Contention Managers:

 Suicide, Aggressive, Karma and Polka

 Lock-Stealing Contention Managers:

 AggressiveLS, KarmaLS and KillPrioLS

Agenda

 Background and motivation

 The Lock Stealing Algorithm

 TL2 Implementation

 Empirical Evaluation

Empirical Evaluation

 Benchmarks:

 Integer-Set microbenchmarks

 STAMP – simulates real applications

 Hardware:

 Intel i7 920 Extreme Edition (Nehalem)
2.67 GHz

 4 cores, each running 2 hardware threads

Red-Black Tree Integer Set

Red-Black Tree Integer Set

-10%

+19%

STAMP Intruder

STAMP Intruder

+20%

+53%

Thank You

Links

 Deuce STM project

 http://sites.google.com/site/deucestm/

 org.deuce.transaction.tl2cm package

