Coping With Context
Switches in Lock-Based STMs

Yoav Cohen

Joint with

Yehuda Afek and Adam Morrison
Tel Aviv University

Agenda

" Background and motivation

" The Lock Stealing Algorithm
" TL2 Implementation

" Empirical Evaluation

Software Transactional Memory

" Programmers define blocks of code as transactions:

atomic {
<code block>

}

" Transactions take effect atomically

Simplicity of Global Clock with performance of Fine-

Grained Locking

Lock-Based STMs

Basic design:

N
N
Application Array of
Memory A Versioned Locks
N

| '] = I Lock Bit I Version '

Incrementing a Shared Counter

counter=13

e Start TX
Y -G v=1) Read
Read @ @Qj counter

colintay)
Take atomic { | -rilfs
_ Rollback int ¢ = counter; Release \ Commit
c=c+l; Lock |
counter = ¢; - Write

} counter

Context Switches

Threads may be switched-out when:
= #S/W threads > #H/W threads
" |[nterrupts

" Page faults

Q: A thread with a lock is switched out. What
happens?

A: Transactions that need this lock abort or wait

Throughput (transactions/s)

The Result: Throughput Degradation

1.2e+06

1.1e+06

1e+06

900000

800000

700000

600000

500000

400000

300000

200000

100000

16 24 32 40 48 56 64
Number of threads

More context switches =

0% Updates —+—
20% Updates ——
50% Updates —»—

Deuce TL2
running on Intel
i7 with 8 hyper
threads

Agenda

" Background and motivation

" The Lock Stealing Algorithm

" TL2 Implementation

" Empirical Evaluation

The Solution: Lock Stealing

Instead of waiting for a switched-out
lock, steal it:

= Abort the switched-out transaction

= Take the lock

Lock Stealing

= Status field per thread:
= RUNNING, COMMITTED or ABORTED

©= I Status I Local Clock '

= Enhanced locks:

0 _ I Lock Bit I Version I Owner I Owner L. Clock '

The paihr@ahepilocal Clocks: 134 | ocal
idueRkr@nsaetion identifiep iar

Lock Stealing

® <T1,24> aborts <T2,10>:
= CAS(T2, <RUNNING,10>, <ABORTED,10>)

= <T1,24> steals L from <T2,10>:

= CAS|
<

<

L ock,
=1, v=2, owner=T2, local_clock=10>,

=1, v=2, owner=T1], local_clock=24>)

Does It Always Work?

Q: Can we always do this trick?

A: Nope. When a transaction is COMMITTED,
it can’t be aborted.

Transaction Lifecycle

Update Release
Memory Locks

ON\N\\“ED

Run Take Try
l S I Locks Commlt

e (=

Bac)

Window of

Window of Un-. |
Abort-ability Abortability

Brief Summary

= Context switches cause throughput
degradation

= Because switched out locks result in lots of
aborts

" New approach: instead of waiting for locks,
abort other and steal the lock

Agenda

" Background and motivation

" The Lock Stealing Algorithm

" TL2 Implementation

" Empirical Evaluation

Lock Stealing for TL2

= Based on Deuce

= An open-source Java STM framework

= Added Contention Management support:
= Upon conflict contention manager invoked
" Decides what to do:

= Restart current transaction
= \Wait for lock
= Abort other transaction and steal lock

Lock Stealing for TL2

" Lock-Waiting Contention Managers:

= Suicide, Aggressive, Karma and Polka

" Lock-Stealing Contention Managers:
= AggressivelS, KarmalS and KillPriolLS

Agenda

" Background and motivation
" The Lock Stealing Algorithm

" TL2 Implementation

" Empirical Evaluation

Empirical Evaluation

" Benchmarks:
" [nteger-Set microbenchmarks
= STAMP — simulates real applications

= Hardware:

" [ntel i7 920 Extreme Edition (Nehalem)
2.67 GHz

= 4 cores, each running 2 hardware threads

Throughput (transactions/s)

900000

800000

700000

600000

500000

400000

300000

200000

100000

Red-Black Tree Integer Set

64K, 20% updates

8 16

24 32 40
Number of threads

o4 TL2 ——

TL2-Aggressive
TL2-Karma

TL2-AggressivelS -
TL2-KarmalLsS ----
TL2-KillPrioLS ----

Throughput (transactions/s)

Red-Black Tree Integer Set

900000

800000

700000

600000

500000

400000

300000

200000

100000

64K, 20% updates

| | | | C Tl ——
TL2-AggressivelS ----B---
-8 a.
g N
|.
+19%
16 24 32 40 48 56 64

Number of threads

Speedup

STAMP Intruder

1I6 2|4 3|2 z;o 4IB 5IG 64 TL2 —+—
Number of threads TL2_Agg|’eSSive
TL2-Karma

TL2-AggressivelS ----@---
TL2-KarmalLS ----m----
TL2-KillPrioLS ----e---

Speedup

STAMP Intruder

3 T I : | | |

= +20%

TLD ——

TL2-KillPrioLS ----e----

0-5 1 1 1 1 1 1 1
0 8 16 24 32 40 48 56 64

Number of threads

Thank You

Links

= Deuce STM project
= http://sites.google.com/site/deucestm/
" org.deuce.transaction.tl2cm package

