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Software Transactional Memory

" Programmers define blocks of code as transactions:

atomic {
<code block>

}

" Transactions take effect atomically

Simplicity of Global Clock with performance of Fine-

Grained Locking



Lock-Based STMs

Basic design:
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Incrementing a Shared Counter
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Context Switches

Threads may be switched-out when:
= #S/W threads > #H/W threads
" |[nterrupts

" Page faults

Q: A thread with a lock is switched out. What
happens?

A: Transactions that need this lock abort or wait



Throughput (transactions/s)

The Result: Throughput Degradation
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The Solution: Lock Stealing

Instead of waiting for a switched-out
lock, steal it:

= Abort the switched-out transaction

= Take the lock



Lock Stealing

= Status field per thread:
= RUNNING, COMMITTED or ABORTED

©= I Status I Local Clock '

= Enhanced locks:

0 _ I Lock Bit I Version I Owner I Owner L. Clock '
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Lock Stealing

® <T1,24> aborts <T2,10>:
= CAS(T2, <RUNNING,10>, <ABORTED,10>)

= <T1,24> steals L from <T2,10>:

= CAS|
<

<

L ock,
=1, v=2, owner=T2, local_clock=10>,

=1, v=2, owner=T1], local_clock=24>)



Does It Always Work?

Q: Can we always do this trick?

A: Nope. When a transaction is COMMITTED,
it can’t be aborted.



Transaction Lifecycle
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Brief Summary

= Context switches cause throughput
degradation

= Because switched out locks result in lots of
aborts

" New approach: instead of waiting for locks,
abort other and steal the lock
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Lock Stealing for TL2

= Based on Deuce

= An open-source Java STM framework

= Added Contention Management support:
= Upon conflict contention manager invoked
" Decides what to do:

= Restart current transaction
= \Wait for lock
= Abort other transaction and steal lock



Lock Stealing for TL2

" Lock-Waiting Contention Managers:

= Suicide, Aggressive, Karma and Polka

" Lock-Stealing Contention Managers:
= AggressivelS, KarmalS and KillPriolLS
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Empirical Evaluation

" Benchmarks:
" [nteger-Set microbenchmarks
= STAMP — simulates real applications

= Hardware:

" [ntel i7 920 Extreme Edition (Nehalem)
2.67 GHz

= 4 cores, each running 2 hardware threads



Throughput (transactions/s)
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Throughput (transactions/s)
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Speedup

STAMP Intruder
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Speedup
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Thank You



Links

= Deuce STM project
= http://sites.google.com/site/deucestm/
" org.deuce.transaction.tl2cm package



