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Summary

* NUMA multicore systems are unfair to
local memory accesses

* Local execution sometimes suboptimal
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NUMA multicores: how it happened
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NUMA multicores: how it happened

Next generation: NUMA
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NUMA multicores: how it happened

Next generation: NUMA
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Bandwidth sharing

* Frequent scenario:

bandwidth shared
between cores

e Sharing model for
the |ﬂt€| Nehalem DRAM memory DRAM memory
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Evaluation system
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n n H H n E E Intel Nehalem E5520

2 X4 cores

m m 8 MB level 3 cache

12 GB DDR3 RAM

5.86 GT/s QPI

DRAM memory DRAM memory

10



Bandwidth sharing: local accesses

Processor 0 Processor 1

ﬂ H H SIEE R
Level 3 cache
Global Queue

DRAM memory

11



Bandwidth sharing: remote accesses
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Bandwidth sharing: combined accesses
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Global Queue

* Mechanism to arbitrate between different
types of memory accesses

e We look at fairness of the Global Queue:

— local memory accesses
— remote memory accesses

— combined memory accesses
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Benchmark program
» STREAM triad
for (i=0; i<SIZE; i++)

{
a[i]l=b[i]+SCALAR*c[i];

}

 Multiple co-executing triad clones



Multi-clone experiments

* All memory allocated on Processor 0

 Local clones: Remote clones:

 Example benchmark configurations:
(2L, OR) (0L, 3R) (2L, 3R)
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GQ fairness: local accesses
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GQ fairness: remote accesses
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Global Queue fairness

* Global Queue fair when there are
only local/remote accesses in the system

e What about combined accesses?
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GQ fairness: combined accesses
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GQ fairness: combined accesses

Execute clones in all possible configurations

# local clones k

0 1 2 3 4

# remote clones

=)

A W N — O




GQ fairness: combined accesses

Total bandwidth [GB/s]
14
12 -
10 -

o N OB O 00
|

(4L, OR) (4L, 1R) (4L, 2R) (4L, 3R) (4L, 4R)

Benchmark configurations

M localclones M remoteclones

22



GQ fairness: combined accesses

Execute clones in all possible configurations
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Combined accesses
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Combined accesses

* |n configuration (4L, 1R) remote clone gets
30% more bandwidth than a local clone

e Remote execution can be better than local
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Bandwidth sharing model
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Sharing factor ([3)

e Characterizes the fairness of the Global
Queue

* Dependence of sharing factor on contention?



Contention affects sharing factor
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Contention affects sharing factor
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Combined accesses
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Contention affects sharing factor

e Sharing factor decreases with contention

e With local contention remote execution
becomes more favorable
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The next generation

DRAM memory DRAM memory

Intel Westmere X5680
2 X 6 cores

12 MB level 3 cache
144 GB DDR3 RAM

6.4 GT/s QP!
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The next generation
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Conclusions

* Optimizing for data locality can be
suboptimal

* Applications:
— OS scheduling (see ISMM’11 paper)

— data placement and computation scheduling
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Thank you! Questions?



