Memory System Performance in a NUMA Multicore Multiprocessor

Zoltan Majo and Thomas R. Gross

Department of Computer Science ETH Zurich

Summary

 NUMA multicore systems are unfair to local memory accesses

Local execution sometimes suboptimal

Outline

NUMA multicores: how it happened

Experimental evaluation: Intel Nehalem

Bandwidth sharing model

The next generation: Intel Westmere

First consulting CNAD

Total bandwidth [GB/s]

VOIVIA III aiticoles. How it happened

Bandwidth sharing

Frequent scenario:

bandwidth shared between cores

 Sharing model for the Intel Nehalem

Outline

NUMA multicores: how it happened

Experimental evaluation: Intel Nehalem

Bandwidth sharing model

The next generation: Intel Westmere

Evaluation system

Bandwidth sharing: local accesses

Bandwidth sharing: remote accesses

Bandwidth sharing: combined accesses

Global Queue

 Mechanism to arbitrate between different types of memory accesses

- We look at fairness of the Global Queue:
 - local memory accesses
 - remote memory accesses
 - combined memory accesses

Benchmark program

STREAM triad

```
for (i=0; i<SIZE; i++)
{
   a[i]=b[i]+SCALAR*c[i];
}</pre>
```

Multiple co-executing triad clones

Multi-clone experiments

All memory allocated on Processor 0

• Local clones: c Remote clones: c

Example benchmark configurations:

GQ fairness: local accesses

GQ fairness: remote accesses

Global Queue fairness

 Global Queue fair when there are only local/remote accesses in the system

What about combined accesses?

Execute clones in all possible configurations

Execute clones in all possible configurations

Execute clones in all possible configurations

remote clones

Combined accesses

Total bandwidth [GB/s]

Combined accesses

In configuration (4L, 1R) remote clone gets
 30% more bandwidth than a local clone

Remote execution can be better than local

Outline

NUMA multicores: how it happened

Experimental evaluation: Intel Nehalem

Bandwidth sharing model

The next generation: Intel Westmere

Bandwidth sharing model

Sharing factor (β)

Characterizes the fairness of the Global Queue

Dependence of sharing factor on contention?

Contention affects sharing factor

Contention affects sharing factor

Combined accesses

Total bandwidth [GB/s]

Contention affects sharing factor

Sharing factor decreases with contention

With local contention remote execution becomes more favorable

Outline

NUMA multicores: how it happened

Experimental evaluation: Intel Nehalem

Bandwidth sharing model

The next generation: Intel Westmere

The next generation

The next generation

Total bandwidth [GB/s]

Conclusions

 Optimizing for data locality can be suboptimal

Applications:

- OS scheduling (see ISMM'11 paper)
- data placement and computation scheduling

Thank you! Questions?