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Introduction



Magnetic Disk 1s a Block Device
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SSD 1s Yet Another Block Device
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We Want the Current Block Device API
to Be Richer
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Our Design Beats the Competition
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Flash Background



How NAND Flash Works




Page 1s Write Unit




Block is the Erase Unit

page

» No overwrite in-place



Block Level Mapping




obsolete

B\ 2iid

erased




obsolete

B\ 2iid

erased




obsolete

B\ 2iid

erased




obsolete

B\ 2iid

erased




i Write(12, |)
IHRRREREEEED

obsolete

B\ 2iid

erased




Page-Level Mapping 1s More Efficient

» Mapping data structure significantly larger
» Page-level mapping of 256GB of flash requires 256MB of RAM
» Most SSDs have small RAM (tens of MB)



Every Action Still Has Overhead

SSD
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» Every request requires accessing and changing
mapping data structure
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» Committing and reading chunks to/from flash incurs
overhead

» Random access more sensitive to this kind of overhead



Freeing Space Adds Overhead
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» Similarly, need to change relevant mapping chunks
» Only then, can we erase old block
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The Design




TWO‘level Mappll’lg Data pages and mapping

chunk pages on flash
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Our Mapping Chunks are Small

» Mapping chunk size << Page size

» Writing the mapping to flash causes
very little overhead
Chunks buffered and committed lazily to flash
Chunk read latency < full-page read latency

» Baseline design (DFTL) used page-sized chunks



Small Mapping Chunks Improve

Performance
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We Want to Do
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Exploiting the Host’s HUGE Memory

» RAM in SSD is small

» RAM on host Is large

» Perhaps we should store the mapping on the host
» (No SSD does this)

» Keeping the host & the SSD consistent is hard
The SSD needs to modify the mapping (reclamations)

» Lets cache mapping chunks on the host but treat
them as hints, not as authoritative mappings

» Send back as hints before any read/write request



» Dedicated kernel module on host-side
» Pseudo-LUN on SSD-side
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Where are

the Savings?
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Implementation & Results



Prototype Implementation

» Concurrent SSD simulator, each flash chip simulated
by a separate thread

» Controller code executes SCSI requests and drives
simulated buses and simulated flash chips

» Garbage collection (kept it simple)
» Code runs under fgt (a user-space SCSI framework)
» Host-side code: single kernel module (hints cache)

32 SYSTOR 2011, June 2011



Experimental Setup

» VirtualBox machine ran a Linux kernel with our
hinting device driver

» SSD prototype runs on the same machine under {gt,
and exported an iSCSI disk

» SSD configuration:
8 NAND flash chips
4 buses
4GB Capacity
RAM usage in the SSD is 1MB



» Block-device synthetic workloads for all access
patterns (Rand./Seq. Write/Read)

» Performance metric — actual flash accesses per
SCSI request

» (Simulator is not cycle accurate)

» Comparison with DFTL (our implementation)
Page-size mapping chunks
No hinting



Small Chunks & Hinting Improve
Performance
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Performance Close to Hardware Limit
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The Benefits of Hinting Scale with the
Size of the Hints Cache
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What if? Hinting More Important when Flash

Latency 1s High
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Lessons Learned (About Research)

» We really nailed the way to design SSDs, but

» In terms of the research, we probably should have
Built a cycle-accurate simulator

Separated the performance simulations from validation on
the iISCSI framework



SSDs can be Better

» Two-level page mapping with small chunks delivers
great performance, even for random writes

» Even with low-end SSDs (small RAM)

» Caching the entire mapping in RAM - close to
optimal performance

» Either with an expensive SSD (lots of RAM)
» Or with a richer host-SSD interface (hints)



» Open Source (prototype+kernel module), code at
http://www.cs.tau.ac.11/~stoledo

» Thank you!



