Prototyping a High-Performance
Low-Cost Solid-State Disk

Evgeny Budilovsky, Aviad Zuck, Sivan Toledo

Tel-Aviv university

Introduction

Magnetic Disk 1s a Block Device

Magnetic

Disk

read block
write block

Magnetic

Disk
Read(LBA)
Write(LBA, data)

SSD 1s Yet Another Block Device

Read(LBA)
Write(LBA, data) §

We Want the Current Block Device API
to Be Richer

(o]

Read(LBA)
Write(LBA, data) §

?

Our Design Beats the Competition

800 T T

Il chunk read
700} [Ichunk write -
[lpage read
ol Bl page write -
Qveral_ge sl Existing
unning Design '
bl ol Our Design

300

2001

100

I
@9 - Q‘)@ O {éo - %Q! O {Z} '5@ {b %e
A -

< \ .
read write read write

Flash Background

How NAND Flash Works

Page 1s Write Unit

Block is the Erase Unit

page

» No overwrite in-place

Block Level Mapping

obsolete

B\ 2iid

erased

obsolete

B\ 2iid

erased

obsolete

B\ 2iid

erased

obsolete

B\ 2iid

erased

i Write(12, |)
IHRRREREEEED

obsolete

B\ 2iid

erased

Page-Level Mapping 1s More Efficient

» Mapping data structure significantly larger
» Page-level mapping of 256GB of flash requires 256MB of RAM
» Most SSDs have small RAM (tens of MB)

Every Action Still Has Overhead

SSD

wite(1, Ji]

» Every request requires accessing and changing
mapping data structure

wite(1, Ji]

» Committing and reading chunks to/from flash incurs
overhead

» Random access more sensitive to this kind of overhead

Freeing Space Adds Overhead

obsolete

valid

||
@ .erased

)

» Similarly, need to change relevant mapping chunks
» Only then, can we erase old block

®

obsolete

valid

erased

The Design

TWO‘level Mappll’lg Data pages and mapping

chunk pages on flash

. Vv
= £y
The root array in RAM Q’b@ %ﬁf}h {iﬁl
: A0 @ H
version phy. address & F Qnﬁ
LBAs 0 to c-1 — 0 &
. 0 S
LBAs ¢ to 2c-1 T 1 -
~ -lmmlmr N
LBAs 2¢ fo 3c-1 9 1
LBAs 3¢ to 4c-1 3 ""”””I ™
4 2
5
|5_ !I
: 3/
T
5 4
9
B e
10 :
11

Our Mapping Chunks are Small

» Mapping chunk size << Page size

» Writing the mapping to flash causes
very little overhead
Chunks buffered and committed lazily to flash
Chunk read latency < full-page read latency

» Baseline design (DFTL) used page-sized chunks

Small Mapping Chunks Improve

Performance
800 T T T T | I
B chunk read
700 F chunk write
page read
800 - Bl page write T
Average
Running soor i
Times DFTL

400

300

200

100

Chunks buffered
and committed
lazily

We Want to Do

Average
Running
Times

800

700

600

500

400

300

200

100

Even Better

Existing

Design

\,b(\é‘ 6@0‘. K@Qé.
read Wr

B chunk read

chunk write
page read
Bl page write
Our
Design
>
) {(} k)
fad write

Exploiting the Host’s HUGE Memory

» RAM in SSD is small

» RAM on host Is large

» Perhaps we should store the mapping on the host
» (No SSD does this)

» Keeping the host & the SSD consistent is hard
The SSD needs to modify the mapping (reclamations)

» Lets cache mapping chunks on the host but treat
them as hints, not as authoritative mappings

» Send back as hints before any read/write request

» Dedicated kernel module on host-side
» Pseudo-LUN on SSD-side

Host | SSD
assist kernel high-level high-level
thread SCSI generic SCSI disk T
store mappings mappings SCSI command mapping with
hints SCSI command SCSI command
mapping el hints LUN
cache mapping query-response | SCSI driver mapping with

SCSI command
| mappings hints
I

Where are

the Savings?

Redundant
chunk read

Buffered
chunk write

&
Q &
& & 'ﬁ
5= 3 t?
§ 3 4
& ¢ o i
wrlt& LBA 1
— get chunk
for LBA 1
—_ read chunk
___11in page2
LBA 1 was
atpage?
markt?ag&? write data to
as obsolete _ page93
write done
markpage & |Ba 1 isin
93 as in use _ page93
modify the
done mapping chunk

wnle don e

Implementation & Results

Prototype Implementation

» Concurrent SSD simulator, each flash chip simulated
by a separate thread

» Controller code executes SCSI requests and drives
simulated buses and simulated flash chips

» Garbage collection (kept it simple)
» Code runs under fgt (a user-space SCSI framework)
» Host-side code: single kernel module (hints cache)

32 SYSTOR 2011, June 2011

Experimental Setup

» VirtualBox machine ran a Linux kernel with our
hinting device driver

» SSD prototype runs on the same machine under {gt,
and exported an iSCSI disk

» SSD configuration:
8 NAND flash chips
4 buses
4GB Capacity
RAM usage in the SSD is 1MB

» Block-device synthetic workloads for all access
patterns (Rand./Seq. Write/Read)

» Performance metric — actual flash accesses per
SCSI request

» (Simulator is not cycle accurate)

» Comparison with DFTL (our implementation)
Page-size mapping chunks
No hinting

Small Chunks & Hinting Improve
Performance

800

700

600 -

average time(us)

200

100

3001

DFTL

B chunk read
[chunk write
[lpage read
Bl page write]

Our Design

Performance Close to Hardware Limit

400

All Bars 250

Our Design

300F

average time(us)

Reading
Mapping
Chunks

2501

200p

1501

100

hinting
off

O o O
‘@0 %Q (&S\ =)

read write

Hinting on

>

6. QO‘.

O O
‘@0 =) @9 ‘be

read write

| | chunk write

| I page write

B chunk read

[Ipage read

Full page
program latency

\ Full page

read latency

The Benefits of Hinting Scale with the
Size of the Hints Cache

20

+
B0
0 70l :
% of SCSI - +_ All random writes
requests that ;|
require a chunk Random write
read '
r workload
= a0t ¥
= + *
g'au
:.__ =+
4L 50%
- * "
random
ok +

=]
i

1 1 1 ! 1 1 ! 1 i
20 30 40 50 il 70 a0 an 100

Memory Devoted to Hints on the Host (%)

What if? Hinting More Important when Flash

Latency 1s High

us)

average time(

)
=
=

on
=
=2

£
=
=]

]
=
=2

[
[=]
=]

=
=
=

L=

faster bus
-tl:hunk‘read
[chunk write
- DFTL [Ipage read |
Bl age write
Our
Design I
& P @ & e
read write read write

average time{us)

2000

1800+

1600

1400}

slower flash chlp

h|nt|ng

12oothinti

1000}

800y

G007

400}

200

O o O
& LS

o & o
Ol
& g &0

read write read write

I chunk read

1 | I chunk write

[_lpage read
Bl a0c vrite

Lessons Learned (About Research)

» We really nailed the way to design SSDs, but

» In terms of the research, we probably should have
Built a cycle-accurate simulator

Separated the performance simulations from validation on
the iISCSI framework

SSDs can be Better

» Two-level page mapping with small chunks delivers
great performance, even for random writes

» Even with low-end SSDs (small RAM)

» Caching the entire mapping in RAM - close to
optimal performance

» Either with an expensive SSD (lots of RAM)
» Or with a richer host-SSD interface (hints)

» Open Source (prototype+kernel module), code at
http://www.cs.tau.ac.11/~stoledo

» Thank you!

