
Full Speed in Reverse
protecting legacy binaries from memory corruption attacks

Herbert Bos
VU University Amsterdam

Systems Security @ VU

Grants

• ERC StG “Rosetta”
• EU FP 7 Syssec
• DG Home iCode

CAN WE WIN?

Can we stop advanced malware?

• Like Stuxnet, Duqu, Zeus, TDL4, Flame(?)

Can we stop advanced malware?

Can we stop advanced malware?
Zeus v3

Can we stop advanced malware?

• We tried
– based on the work by Dennis Andriesse

Can we stop advanced malware?

• Plan:
– Reverse engineer relevant parts
– Poison the botnet

•
• Reversing is hard

– several layers of encryption and obfuscation
–

• We dump the code after unpacking
– and get 268.000 lines of assembly

Can we stop advanced malware?

Can we stop advanced malware?

• Zeus strikes back
– DDoS
– Update that blacklists our IP addresses

Can we stop advanced malware?

• We managed to take out 25% of the nodes
•
• In the end, we failed!
•
• Trivial to make even more resilient botnets
•

Perhaps we need better protection

Next few slides are based on
Memory Errors: Past, Present, and Future (RAID’12)

• Victor van der Veen, Nitish Sharma, Lorenzo Cavallaro,
Herbert Bos

•

The most popular language in the world

http://www.langpop.com/

http://www.langpop.com/

The most popular language in the world

http://www.langpop.com/
 http://www.google.com/codesearch

http://www.langpop.com/
http://www.google.com/codesearch

Buffer overflows

• Perpetual top-3 threat
– SANS CWE Top 25 Most dangerous

programming errors
• Most drive-by-downloads

– infect browser, download malware
–

Many defensive measures

• Canaries (StackGuard and friends)
• NX bit / W⊕X
• ASLR
•

Evolution at work

Still they come

Vulnerabilities and exploits
(as percentage of total)

vulnerabilities

exploits

And legacy code?
• we do not have source code

– we probably do not even have symbols
• we cannot recompile

– most protective measures require
recompilation

• we cannot protect
–

Taint Analysis?

Taint analysis

Linux

Argos

Windows

raise alarm when tainted
bytes are loaded in PC

Taint tracking: useful, but slow

…and detects not the attack,
but its manifestation…

just missed it!

…and does not detect attacks on
non-control data at all!

• trivially exploitable
• not prevented by ASLR, NX, or StackGuard

BinArmor

A Body Armour
for Binaries

This talk is based on two papers
• Asia Slowinska, Traian Stancescu, Herbert Bos

Howard: a dynamic excavator for reverse engineering
data structures (NDSS’11)

• Asia Slowinska, Traian Stancescu, Herbert Bos
Body armor for binaries: preventing buffer overflows
without recompilation (USENIX’12)

•
•

no source
no symbols

no clue?

In a nutshell…

In a nutshell…

In a nutshell…

In a nutshell…

1 2 3

Step 1: extract the arrays

Two possibilities
– symbol tables
– stripped
–

let’s assume the latter

 reverse engineering

1

Problem
1

Why is it difficult?

1. struct employee {
2. char name[128];
3. int year;
4. int month;
5. int day
6. };
7.
8. struct employee e;
9. e.year = 2010;

1

`

Why is it difficult?

1. struct employee {
2. char name[128];
3. int year;
4. int month;
5. int day
6. };
7.
8. struct employee e;
9. e.year = 2010;

 MISSING

•Data
structures

•

Instr 1
Instr 2

1

Data structures: key insight

Yes, data is “apparently unstructured”
But usage is not!

–
–

1

Data structures: key insight

Yes, data is “apparently unstructured”
But usage is not!

–
–

1

Data structures: key insight

Yes, data is “apparently unstructured”
But usage is not!

–
– Analyse dynamically

test

SE inputs DDE Emu

app

data structures

1

Intuition
• Observe how memory

is used at runtime
to detect data
structures

• E.g., if A is a pointer…

•
–

•

1. and A is a function frame pointer,
then *(A + 8) is perhaps a
function argument

2. and A is an address of a
structure, then *(A + 8) is perhaps
a field in this structure

3. and A is an address of an
array, then *(A + 8) is perhaps an
element of this array

field0

field1

field2

field3

A

parent EBP

return addr

fun arg1

fun arg2

A elem2

elem3

elem4

elem5

elem0

elem1

A

Track pointers

1

Approach

• Track pointers
– find root pointers
– track how pointers derive from each other

• for any address B=A+8, we need to know A.

• Challenges:
– missing base pointers

• for instance, a field of a struct on the stack
may be updated using EBP rather than a
pointer to the struct

– multiple base pointers
• e.g., normal access and memset()

1

Arrays are tricky
• Detection:

– looks for chains of accesses in a
loop

•
–

•

1

Arrays are tricky
• Detection:

– looks for chains of accesses in a
loop

•
–

•

1

Arrays are tricky
• Detection:

– looks for chains of accesses in a
loop

•
–

•

1

Arrays are tricky
• Detection:

– looks for chains of accesses in a
loop

– and sets of accesses with same
base in linear space

•
–

•

1

Interesting challenges

• Example:
– Decide which

accesses are
relevant

• Problems
caused by
e.g.,
memset-
like
functions

•

Reported by memset

array 1 array 2structure

1

Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary

elements
–

•

1

Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary

elements
–

•

1

Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary

elements
–

•

1

Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary

elements
–

•

1

skip boring details

Final mapping

• map access patterns to data structures
– static memory : on program exit
– heap memory : on free
– stack frames : on return

1

Also: not everything is hidden

1

Key insight 2

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1

Key insight 2

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1

Semantics: key insights

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1

Key insight 3

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

1

Key insight 3

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

1

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1

open (“Herbert.doc”, R_ONLY)

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1

open (“Herbert.doc”, R_ONLY)

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1

Results
1

Results

variables bytes

1

Results
1

Results
1

Results
1

Results
1

Results
1

Results
1

Demo?

Step 2: find array accesses

In principle: very simple
– detect array accesses at runtime
– remember the instructions
–

Note: not complete

2

Step 3: rewrite the binary
3

Two Modes
• Protect at object level (like WIT, BBC)

– given symbols: zero false positives
•
•
• Protect at subfield granularity (like no-one else)

– no false positives seen in practice (but no
guarantees)

3

THIS TALK
Focuses on the latter

3

A colourful protection

p = array;
ASSIGN pointer a colour
col(p) = RED
i = 0;
while(!stop)
{
 *(p + i) = 0;

 i++;
}

• give all arrays a unique colour

3

A colourful protection

p = array;
ASSIGN pointer a colour
col(p) = RED
i = 0;
while(!stop)
{
 *(p + i) = 0;
 CHECK if colours match:
 mem_col(p+i) == col(p)?
 i++;
}

• give all arrays a unique colour

3

Reality requires subtle shades
3

Reality requires subtle shades
3

Reality requires subtle shades
3

In reality

Check: does the pointer colour match that of the location pointed to?
(left to right, in all shades, with blanks serving as wild cards)

3

Unfortunately, some code
is colour blind!

3

So we mask some shades3

So we mask some shades3

Performance?
321

Performance?
321

overall: 2.9

Performance?
321

 Effectiveness?321

Conclusions
• Memory errors

– are not going to go away
• BinArmor

– protect against attacks on non-control data
– few (if any) FPs
– expensive
– not fully optimised yet!

http://www.cs.vu.nl/~herbertb/

	Slide3
	Slide73
	Slide128
	Slide150
	Slide142
	Slide151
	Slide144
	Slide143
	Slide145
	Slide146
	Slide147
	Slide149
	Slide148
	Slide134
	Slide71
	Slide72
	Slide4
	Slide5
	Slide130
	Slide2
	Slide132
	Slide74
	Slide131
	Slide7
	Slide81
	Slide76
	Slide77
	Slide78
	Slide80
	Slide69
	Slide9
	Slide135
	Slide46
	Slide47
	Slide48
	Slide49
	Slide50
	Slide83
	Slide84
	Slide85
	Slide86
	Slide87
	Slide88
	Slide89
	Slide90
	Slide91
	Slide92
	Slide93
	Slide94
	Slide95
	Slide96
	Slide97
	Slide98
	Slide99
	Slide138
	Slide100
	Slide101
	Slide102
	Slide103
	Slide104
	Slide105
	Slide106
	Slide107
	Slide108
	Slide109
	Slide110
	Slide111
	Slide112
	Slide113
	Slide114
	Slide115
	Slide116
	Slide117
	Slide118
	Slide124
	Slide127
	Slide125
	Slide126
	Slide51
	Slide52
	Slide55
	Slide56
	Slide57
	Slide58
	Slide59
	Slide60
	Slide61
	Slide136
	Slide137
	Slide64
	Slide65
	Slide66
	Slide67
	Slide43
	Slide141

