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CAN WE WIN?



Can we stop advanced malware?

• Like Stuxnet, Duqu, Zeus, TDL4, Flame(?)



Can we stop advanced malware?



Can we stop advanced malware?
Zeus v3



Can we stop advanced malware?

• We tried
– based on the work by Dennis Andriesse



Can we stop advanced malware?

• Plan:
– Reverse engineer relevant parts
– Poison the botnet

•
• Reversing is hard

– several layers of encryption and obfuscation
–

• We dump the code after unpacking
– and get 268.000 lines of assembly 



Can we stop advanced malware?



Can we stop advanced malware?

• Zeus strikes back
– DDoS
– Update that blacklists our IP addresses



Can we stop advanced malware?

• We managed to take out 25% of the nodes
•
• In the end, we failed!
•
• Trivial to make even more resilient botnets
•



Perhaps we need better protection



Next few slides are based on
Memory Errors: Past, Present, and Future (RAID’12)

• Victor van der Veen, Nitish Sharma, Lorenzo Cavallaro, 
Herbert Bos

•



The most popular language in the world

http://www.langpop.com/

http://www.langpop.com/


The most popular language in the world

http://www.langpop.com/
 http://www.google.com/codesearch

http://www.langpop.com/
http://www.google.com/codesearch


Buffer overflows

• Perpetual top-3 threat
– SANS CWE Top 25 Most dangerous 

programming errors
• Most drive-by-downloads

– infect browser, download malware
–



Many defensive measures

• Canaries (StackGuard and friends)
• NX bit / W⊕X
• ASLR
•



Evolution at work



Still they come



Vulnerabilities and exploits 
(as percentage of total)





vulnerabilities

exploits



And legacy code?
• we do not have source code

– we probably do not even have symbols
• we cannot recompile

– most protective measures require 
recompilation

• we cannot protect
–



Taint Analysis?



Taint analysis

Linux

Argos

Windows

raise alarm when tainted
bytes are loaded in PC



Taint tracking: useful, but slow



…and detects not the attack,
but its manifestation…

just missed it!



…and does not detect attacks on 
non-control data at all!

• trivially exploitable
• not prevented by ASLR, NX, or StackGuard



BinArmor



A Body Armour
for Binaries



This talk is based on two papers
• Asia Slowinska, Traian Stancescu, Herbert Bos

Howard: a dynamic excavator for reverse engineering 
data structures (NDSS’11)

• Asia Slowinska, Traian Stancescu, Herbert Bos
Body armor for binaries: preventing buffer overflows 
without recompilation (USENIX’12)

•
•



no source 
no symbols

no clue?



In a nutshell…



In a nutshell…



In a nutshell…



In a nutshell…

1 2 3



Step 1: extract the arrays

Two possibilities
– symbol tables
– stripped
–

let’s assume the latter 

 reverse engineering

1



Problem
1



Why is it difficult? 

1. struct employee { 
2.       char name[128];
3.       int year;    
4.       int month;  
5.       int day
6. };
7.
8. struct employee e;
9. e.year = 2010;

1



`

Why is it difficult? 

1. struct employee { 
2.       char name[128];
3.       int year;    
4.       int month;  
5.       int day
6. };
7.
8. struct employee e;
9. e.year = 2010;

     MISSING

•Data 
structures

•

Instr 1
Instr 2

1



Data structures: key insight

Yes, data is “apparently unstructured”
But usage is not!

–
–

1



Data structures: key insight
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But usage is not!
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Data structures: key insight

Yes, data is “apparently unstructured”
But usage is not!

–
– Analyse dynamically

test

SE inputs DDE Emu

app

data structures

1



Intuition
• Observe how memory 

is used at runtime 
to detect data 
structures 

• E.g., if A is a pointer… 

•
–

•

1. and A is a function frame pointer, 
then *(A + 8) is perhaps a 
function argument 

2. and A is an address of a 
structure, then *(A + 8) is perhaps 
a field in this structure  

3. and A is an address of an 
array, then *(A + 8) is perhaps an 
element of this array  

field0

field1 

field2

field3 

A

parent EBP

return addr 

fun arg1

fun arg2

A elem2

elem3

elem4

elem5

elem0

elem1

A

Track pointers

1



Approach

• Track pointers
– find root pointers
– track how pointers derive from each other

• for any address B=A+8, we need to know A.

• Challenges:
– missing base pointers

• for instance, a field of a struct on the stack 
may be updated using EBP rather than a 
pointer to the struct

– multiple base pointers
• e.g., normal access and memset()

1



Arrays are tricky
• Detection:

– looks for chains of accesses in a 
loop

•
–

•

1
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Arrays are tricky
• Detection:

– looks for chains of accesses in a 
loop

•
–

•

1



Arrays are tricky
• Detection:

– looks for chains of accesses in a 
loop

– and sets of accesses with same 
base in linear space

•
–

•

1



Interesting challenges

• Example:
– Decide which 

accesses are 
relevant

• Problems 
caused by 
e.g., 
memset-
like 
functions

•

Reported by memset

array 1 array 2structure

1



Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary 

elements
–

•

1
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Further Challenges

• Arrays
– Nested loops
– Consecutive loops
– Boundary 

elements
–

•

1

skip boring details



Final mapping

• map access patterns to data structures
– static memory : on program exit
– heap memory : on free
– stack frames : on return

1



Also: not everything is hidden

1



Key insight 2

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1



Key insight 2

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1



Semantics: key insights

Yes, data is “apparently unstructured”
But usage is not!

Usage (again) reveals semantics
–
–

1



Key insight 3

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

1



Key insight 3
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Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1



open (“Herbert.doc”, R_ONLY)

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
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open (“Herbert.doc”, R_ONLY)

Yes, data is “apparently unstructured”
But usage is not!

Propagate types from sources + sinks

–
–

Key insight 3
1



Results
1



Results

variables bytes

1



Results
1



Results
1



Results
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Results
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Results
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Results
1



Demo?



Step 2: find array accesses

In principle: very simple
– detect array accesses at runtime
– remember the instructions
–

Note: not complete

2



Step 3: rewrite the binary
3



Two Modes
• Protect at object level (like WIT, BBC)

– given symbols: zero false positives
•
•
• Protect at subfield granularity (like no-one else)

– no false positives seen in practice (but no 
guarantees) 

3



THIS TALK
Focuses on the latter

3



A colourful protection

p = array;
ASSIGN pointer a colour
col(p) = RED
i = 0; 
while(!stop) 
{
  *(p + i) = 0;
  

  i++; 
}

• give all arrays a unique colour

3



A colourful protection

p = array;
ASSIGN pointer a colour
col(p) = RED
i = 0; 
while(!stop) 
{
  *(p + i) = 0;
  CHECK if colours match: 
      mem_col(p+i) == col(p)? 
  i++; 
}

• give all arrays a unique colour

3



Reality requires subtle shades
3



Reality requires subtle shades
3



Reality requires subtle shades
3



In reality

Check: does the pointer colour match that of the location pointed to?
(left to right, in all shades, with blanks serving as wild cards)

3



Unfortunately, some code 
is colour blind!

3



So we mask some shades3



So we mask some shades3



Performance?
321



Performance?
321



overall: 2.9

Performance?
321



    Effectiveness?321



Conclusions
• Memory errors

– are not going to go away
• BinArmor

– protect against attacks on non-control data
– few (if any) FPs
– expensive
– not fully optimised yet!

http://www.cs.vu.nl/~herbertb/
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