
SeMiNAS:
A Secure Middleware for Wide-Area

Network-Attached Storage

Ming Chen
Erez Zadok

{mchen, ezk}@cs.stonybrook.edu

Kelong Wang
kelong@dssd.com

Arun O. Vasudevan
aov@nutanix.com

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 2

Outline

Ø  Background & Motivation
¨  Design
¨  Implementation
¨  Evaluation
¨  Conclusions

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 3

Cloud Computing

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 4

Security Concerns of Cloud
l Raised by cloud nature

u  Opaque & intangible
u  Multi-tenant
u  Large exploit surface
u  Complexity (buggy)

l  Intensified by high-profile incidents
u  Silent data corruption
u  Leak of intimate photos of celebrities
u  Leak of user accounts and credentials

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 5

Untrusted
Public Clouds

Clients Clients

Office-1 Office-2

Securing Cloud Storage

LAN LAN

WAN WAN

New challenges:
1.  Cost-efficiency despite high latency
2.  Heterogeneous clients & clouds
3.  Complex storage stack

Device (RAID, FTL)

Block (Device Mappers)

FS (Unionfs, Overlayfs)

Cloud services

Network stacks

Virt

+++

Net-Dist
 +++

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 6

Outline

þ  Background & Motivation
Ø  Design
¨  Implementation
¨  Evaluation
¨  Conclusions

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 7

SeMiNAS Architecture

Benefits of a middleware:
1.  Easy management (a few proxies vs. many clients)
2.  Simple key distribution without trusted third parties
3.  Fit well with WAN caching and firewalls

Untrusted
Public Clouds

Clients Clients

Office-1 Office-2
Untrusted

Public Clouds

Clients
SeMiNAS SeMiNAS

ClientsUntrusted
Public Clouds

Clients
SeMiNAS SeMiNAS

Clients

LAN LAN WAN WAN

NFSv4 NFSv4

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 8

Why Use NFSv4?
l  Advantages over vendor-specific key-value stores

u  Open, pervasive, and standard
§  POSIX-compliant and cross-platform interoperability
§  Suffering less from data or vendor lock-in

u  Optimized for WAN
§  Compound procedures
§  Delegations

u  Richer semantics
§  Simplify application development
§  More optimizations: server-side copying, ADB

l  Advantages over older versions
u  Easier administration with a single port
u  More scalable with pNFS
u  More secure with RPCSEC_GSS, ACL, and Labeled NFS

Amazon EFS

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 9

SeMiNAS Data Path

Cloud

Client 1 Client 2

LAN

WAN

Caching
Layer

Auth-
Encrypt
Layer

Insert(P)

<C, M> =
AuthEncrypt(K, P)

<P, V> =
AuthDecrypt(K, C, M)

Lookup(): P

nfs_write(P)

write_plus(C, M) read_plus(): <C, M>

nfs_read(): P

SeMiNAS

Persistent
 Cache

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 10

Meta-Data Management
l  Each SeMiNAS proxy has

u  Each proxy knows public keys of all proxies
u  Distributed via a secret channel or manually

l  Each file has a unique symmetric file key
u Encrypted by master key pairs
u Encrypt each block with GCM:

l  File layout:

<SID, PubKey, PriKey>

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 11

NFSv4-Based Optimizations (1)
l  NFS Data-Integrity eXtensions

Alternatives Drawbacks
Concatenate a block and its
MAC as a separate file.

Break close-to-
open consistency

Uses a separate file for all
MACs of a file.

Add extra I/O and
disk seeks

Map a block to a larger
block in cloud (16è20KB).

Waste space for
small block sizes

SeMiNAS

NFS Server

OS

HBA

NFS Client

LAN

WAN

Kernel

Device

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 12

NFSv4-Based Optimizations (2)
l  Compound Procedures

l  SeMiNAS Compounds
1.  Write header after creating a file
2.  Read header after opening a file
3.  Update header before closing a dirty file
4.  Read header when getting attributes
5.  Get attributes after writing to a file

11/5/2015

2

RPCs in NFS
• In NFSv3, every operation is implemented as an RPC
• NFSv4 supports compound procedures by which several operations

can be grouped into a single RPC
– Better performance in wide‐area networks

11a) Reading data from a file in v3. b) Reading data using a compound procedure in v4.

Naming in NFS
• NSF provides clients transparent access to a remote file system by

letting a client mount (part of) a remote file system into its own local
file system
– A sever can export a directory (i.e., make a directory and its entries

available to clients)
– An exported directory can be mounted into a client’s local name space

12

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 13

Outline

þ  Background & Motivation
þ  Design
Ø  Implementation
¨  Evaluation
¨  Conclusions

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 14

SeMiNAS Implementation
l  NFS-Ganesha: a user-land NFS server

u  File System Abstraction Layer (FSAL) back-ends
u  FSAL_VFS, FSAL_PROXY, and stackable FSALs

NFS Frontend

FSAL_PCACHE

FSAL_SECNFS

FSAL_PROXY

NFS Frontend

FSAL_VFS

Kernel

OS / HBA

SeMiNAS Proxy

WAN

NFS Server

NFS-Ganesha

NFS-Ganesha

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 15

Extending DIX to NFS
l  Data Integrity eXtensions (DIX) in NFS

u  READ_PLUS

u  WRITE_PLUS

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 16

Implementation Details
l  Details

u  Added caching and security layers in NFS-Ganesha
u  Added support of multiple stackable layers
u  Extended DIX further to NFS
u  Cryptographic C++ library: cryptopp

u  Pass all applicable xfstests cases

l Development efforts
u  25 man-months of 3 graduate students over 3 years
u  Added 13,000 lines of C/C++ code to NFS-Ganesha
u  Fixed 11 NFS-Ganesha and 4 kernel bugs

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 17

Outline

þ  Background & Motivation
þ  Design
þ  Implementation
Ø  Evaluation
¨  Conclusions

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 18

Setup & Workloads
l Experimental setup

u  Five NFS clients: 1G RAM; 6-core CPU; 10GbE NIC
u  SeMiNAS proxy: 64G RAM; 6-core CPU;10GbE NIC for

LAN; 1GbE NIC for WAN; 200GB SSD for cache
u  Server: 64G RAM; 6-core CPU; 1GbE NIC; 20GB virtual

SCSI DIX disk backed by RAM
l Workloads
 Micro-Workloads Filebench Workloads

Random file read/write NFS Server

File creation Web Proxy

File deletion Mail Server

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 19

Different R/W Ratios

 0

 20

 40

 60

 80

 100

 120

1:5 1:4 1:3 1:2 1:1 2:1 3:1 4:1 5:1

write intensive read intensive

N
or

m
al

iz
ed

 S
pe

ed
 (

%
)

Read-to-Write Ratio

30ms
20ms
10ms

(a) Persistent Cache (FSAL PCACHE) Off

 0

 20

 40

 60

 80

 100

 120

1:5 1:4 1:3 1:2 1:1 2:1 3:1 4:1 5:1

write intensive read intensive

N
or

m
al

iz
ed

 S
pe

ed
 (

%
)

Read-to-Write Ratio

30ms
20ms
10ms

(b) Persistent Cache (FSAL PCACHE) On

Figure 5. Relative throughput of SeMiNAS to the baseline
under 10ms, 20ms, and 30ms network delays.

 0

 50

 100

 150

 200

1 10 100

T
hr

ou
gh

pu
t (

O
ps

/S
ec

)

#Threads

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

Figure 6. Throughput of creating empty files in a 10ms-
delay network with one NFS client.

Note that the normalized throughput of SeMiNAS is bet-
ter for longer network delay no matter if the cache is on or
off. This is because SeMiNAS is optimized for wide-area
environments and minimizes the number of round trips be-
tween the proxy and the cloud.

5.2.2 File-Creation Workload
Depending on the number of threads, SeMiNAS has differ-
ent performance impact over the baseline for file creation.
As shown in Figure 6, SeMiNAS has only negligible perfor-
mance impact when there are only one or ten threads. Sur-
prisingly, SeMiNAS makes file creation 35% faster than the
baseline when the number of threads grows to 100. This is
caused by the TCP connection between the proxy and the
server, particularly due to the TCP Nagle algorithm [65]. The
algorithm adds extra delay to outbound packets in the hope
of coalescing multiple small packets into fewer, larger ones;
TCP Nagle trades off latency for bandwidth. This trade-off
hurts the baseline performance of this file-creation work-
load, which is meta-data intensive and generates many small
network packets. In contrast, the algorithm favors SeMi-
NAS because SeMiNAS uses compound procedures to pack

 0

 20

 40

 60

 80

10 20 30

T
hr

ou
gh

pu
t (

O
ps

/S
ec

)

Network Delay (ms)

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

Figure 7. Throughput of deletion of 256KB files, with one
NFS client and 100 threads.

file creations and extra secure operations (e.g., creating file
headers) together to form larger packets.

The number of threads influences the performance be-
cause all threads share one common TCP connection be-
tween the proxy and the server. More threads bring more co-
alescing opportunities; otherwise, the extra waiting of TCP
Nagle is useless if the current request is blocked and no other
requests are coming. To verify this explanation, we tem-
porarily disabled TCP Nagle by setting the TCP NODELAY
socket option, and observed that SeMiNAS’s throughput be-
came about the same (99%) as the baseline thereafter.

Figure 6 also shows that, as expected, the persistent cache
(FSAL PCACHE) does not make a difference in file creation
because FSAL PCACHE caches only data, but not meta-data.

5.2.3 File-Deletion Workload
Figure 7 shows the results of deleting files, where SeM-
iNAS have the same throughput as the baseline with and
without the persistent cache. This is because SeMiNAS does
not incur any extra operations upon file deletion. However,
adding FSAL PCACHE makes file deletion 12–18% slower.
This is because FSAL PCACHE needs one extra lookup op-
eration to delete a file. FSAL PCACHE uses file handles as
unique keys of cached content, but the file deletion function
(i.e., unlink) uses the parent directory and file name, rather
than the file handle, to specify the file. Those extra lookups
could be saved if FSAL PCACHE maintains a copy of the file-
system namespace, which we left as future work.

5.3 Macro-Workloads
We evaluated SeMiNAS using three Filebench macro-workloads:
(1) NFS Server, (2) Web Proxy, and (3) Mail Server.

5.3.1 Network File-System Server Workload
Filebench’s NFS-Server workload emulates the I/O activities
experienced by an NFS server. We used the default settings
of the workload, which contains 10,000 1KB-to-1700KB-
large files totalling 2.5GB. The read sizes of the workload
range from 8K to 135K with 85% reads 8KB-large; the
write sizes range from 9K to 135K with 50% writes 9KB- to
15KB-large. The workloads perform a variety of operations
including open, read, write, append, close, create, and delete.

Figure 8 shows the results of running this workload.
Without cache, the baseline proxy’s throughput decreases

 0

 20

 40

 60

 80

 100

 120

1:5 1:4 1:3 1:2 1:1 2:1 3:1 4:1 5:1

write intensive read intensive

N
or

m
al

iz
ed

 S
pe

ed
 (

%
)

Read-to-Write Ratio

30ms
20ms
10ms

(a) Persistent Cache (FSAL PCACHE) Off

 0

 20

 40

 60

 80

 100

 120

1:5 1:4 1:3 1:2 1:1 2:1 3:1 4:1 5:1

write intensive read intensive

N
or

m
al

iz
ed

 S
pe

ed
 (

%
)

Read-to-Write Ratio

30ms
20ms
10ms

(b) Persistent Cache (FSAL PCACHE) On

Figure 5. Relative throughput of SeMiNAS to the baseline
under 10ms, 20ms, and 30ms network delays.

 0

 50

 100

 150

 200

1 10 100

T
hr

ou
gh

pu
t (

O
ps

/S
ec

)

#Threads

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

Figure 6. Throughput of creating empty files in a 10ms-
delay network with one NFS client.

Note that the normalized throughput of SeMiNAS is bet-
ter for longer network delay no matter if the cache is on or
off. This is because SeMiNAS is optimized for wide-area
environments and minimizes the number of round trips be-
tween the proxy and the cloud.

5.2.2 File-Creation Workload
Depending on the number of threads, SeMiNAS has differ-
ent performance impact over the baseline for file creation.
As shown in Figure 6, SeMiNAS has only negligible perfor-
mance impact when there are only one or ten threads. Sur-
prisingly, SeMiNAS makes file creation 35% faster than the
baseline when the number of threads grows to 100. This is
caused by the TCP connection between the proxy and the
server, particularly due to the TCP Nagle algorithm [65]. The
algorithm adds extra delay to outbound packets in the hope
of coalescing multiple small packets into fewer, larger ones;
TCP Nagle trades off latency for bandwidth. This trade-off
hurts the baseline performance of this file-creation work-
load, which is meta-data intensive and generates many small
network packets. In contrast, the algorithm favors SeMi-
NAS because SeMiNAS uses compound procedures to pack

 0

 20

 40

 60

 80

10 20 30

T
hr

ou
gh

pu
t (

O
ps

/S
ec

)

Network Delay (ms)

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

Figure 7. Throughput of deletion of 256KB files, with one
NFS client and 100 threads.

file creations and extra secure operations (e.g., creating file
headers) together to form larger packets.

The number of threads influences the performance be-
cause all threads share one common TCP connection be-
tween the proxy and the server. More threads bring more co-
alescing opportunities; otherwise, the extra waiting of TCP
Nagle is useless if the current request is blocked and no other
requests are coming. To verify this explanation, we tem-
porarily disabled TCP Nagle by setting the TCP NODELAY
socket option, and observed that SeMiNAS’s throughput be-
came about the same (99%) as the baseline thereafter.

Figure 6 also shows that, as expected, the persistent cache
(FSAL PCACHE) does not make a difference in file creation
because FSAL PCACHE caches only data, but not meta-data.

5.2.3 File-Deletion Workload
Figure 7 shows the results of deleting files, where SeM-
iNAS have the same throughput as the baseline with and
without the persistent cache. This is because SeMiNAS does
not incur any extra operations upon file deletion. However,
adding FSAL PCACHE makes file deletion 12–18% slower.
This is because FSAL PCACHE needs one extra lookup op-
eration to delete a file. FSAL PCACHE uses file handles as
unique keys of cached content, but the file deletion function
(i.e., unlink) uses the parent directory and file name, rather
than the file handle, to specify the file. Those extra lookups
could be saved if FSAL PCACHE maintains a copy of the file-
system namespace, which we left as future work.

5.3 Macro-Workloads
We evaluated SeMiNAS using three Filebench macro-workloads:
(1) NFS Server, (2) Web Proxy, and (3) Mail Server.

5.3.1 Network File-System Server Workload
Filebench’s NFS-Server workload emulates the I/O activities
experienced by an NFS server. We used the default settings
of the workload, which contains 10,000 1KB-to-1700KB-
large files totalling 2.5GB. The read sizes of the workload
range from 8K to 135K with 85% reads 8KB-large; the
write sizes range from 9K to 135K with 50% writes 9KB- to
15KB-large. The workloads perform a variety of operations
including open, read, write, append, close, create, and delete.

Figure 8 shows the results of running this workload.
Without cache, the baseline proxy’s throughput decreases

-46%è+4%

-8%è+4%

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 20

File-Creation Workload
+35%

l  SeMiNAS makes file creation faster
u  TCP Nagle Algorithm
u  Multiple threads sharing one TCP connection
u  SeMiNAS write extra file headers

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 21

Filebench NFS-Server Workload

l  SeMiNAS performance penalty
u  8−17% without cache
u  18−26% with cache
u  Decreases as network delay increases

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 22

Filebench Web-Proxy Workload

 0

 20

 40

 60

 80

10 20 30

Th
ro

ug
hp

ut
 (O

ps
/S

ec
)

Network Delay (ms)

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

Figure 8. Throughput of Filebench NFS-Server workload,
with one benchmarking client and one thread.

from 70 ops/sec to 25 ops/sec as the network latency be-
tween the proxy and the server increased from 10ms to
30ms. After adding the persistent data cache, the baseline
throughput increases but only slightly. The performance
boost of caching is small because the workload contains
many meta-data operations that cannot be cached; for exam-
ple, open and close operations have to talk to the server in
order to maintain close-to-open consistency.

In this NFS-Server workload, SeMiNAS is 8–17% and
18–26% slower than the baseline without and with cache,
respectively. As the network delay grows, the performance
penalty of SeMiNAS becomes smaller regardless of the pres-
ence of cache. This is because we optimized SeMiNAS for
wide-area environment by minimizing the number of round
trips between the proxy and the cloud server.

We noticed that adding cache to SeMiNAS actually
makes the performance slightly worse (the last two bins
in each group of Figure 8). This is because FSAL PCACHE
makes file deletions slower with extra lookups (see Sec-
tion 5.2.3), and file deletions count for as much as 8% of
all WAN round trips in this workload. The extra lookups in-
curred by file deletions are also one of the reasons why the
cache’s performance boost to the baseline is small, although
a lookup in the baseline is cheaper than in SeMiNAS (be-
cause SeMiNAS needs extra bookkeeping during lookups).

5.3.2 Web-Proxy Workload
Filebench’s Web-Proxy workload emulates the I/O activities
of a simple Web-Proxy server, which fits well with SeMi-
NAS’s proxy architecture. The workload has a mix of file
creation, deletion, many open-read-close operations, and a
file append operation to emulate logging. The default Web-
Proxy workload has 10,000 files with an average size of
16KB in a flat directory, and 100 benchmarking threads. We
made three changes to the default settings: (1) we placed
the files in a file-system directory tree with a mean direc-
tory width of 20 because a flat directory made the baseline
so slow (around 20 ops/sec) that SeMiNAS did not show
any performance impact at all; (2) we enlarges the average
file size to 256KB so that the working set size (2.56GB) is
more than twice the size of the NFS client’s RAM (1G) but
smaller than the size of the persistent cache; and (3) we used
a Gamma distribution [64, 67] to control the access pattern

 0

 200

 400

 600

 800

 1000

 0.001 0.01 0.1 1 10

Th
ro

ug
hp

ut
 (O

ps
/S

ec
)

Gamma Shape Parameter (log10)

(a) 10ms Network Delay

 0

 200

 400

 600

 800

 1000

 0.001 0.01 0.1 1 10
Gamma Shape Parameter (log10)

baseline-nocache
baseline-cache
seminas-nocache
seminas-cache

(b) 30ms Network Delay

Figure 9. Web-proxy results with different access patterns,
one NFS client, and 100 threads. A larger value of the shape
parameter means less locality in the access pattern.

of the files, but varied the Gamma’s shape parameter (k) to
emulate access patterns with different degrees of locality.

Figure 9 shows the Web-Proxy workload results. With
10ms network delay, the throughput of “baseline-nocache”
drops from 910 to 630 ops/sec as the degree of work-
load locality decreases. The “seminas-nocache” curve in
Figure 9(a) has a similar shape to its baseline counter-
part, but at 11–18% lower throughputs as a result of ex-
tra security mechanisms in SeMiNAS. With high locality
(k <= 1), adding FSAL PCACHE (blue circle curve) actu-
ally slows down the baseline (red diamond curve) because
(1) FSAL PCACHE is not useful when most reads are served
from the client’s page cache; and (2) FSAL PCACHE also in-
troduces extra overhead for file deletions. Conversely, as the
locality drops (k = 10), the client’s page cache becomes less
effective and the persistent cache, which is larger than the
working set size, becomes effective.

Figure 9(a) shows that SeMiNAS actually makes the
workload up to 15% faster than the baseline when there
is a cache (i.e., the green triangle curve is higher than the
orange rectangle curve). This is because SeMiNAS makes
file creations faster in this highly-threaded workload thanks
to the TCP Nagle algorithm (see Section 5.2.2).

For a slower network of 30ms latency (Figure 9(b)), the
throughputs of baseline and SeMiNAS are both slower than
in the faster network (10ms). However, the relative order of
the four configurations remains the same. Without the cache,
SeMiNAS has a small performance penality of 4–6%; with
the cache, SeMiNAS sees a performance boost of 9–19%.

5.3.3 Mail-Server Workload
Filebench’s Mail-Server workload emulates the I/O activity
of an mbox-style e-mail server that stores each e-mail in a
separate file. The workload consists of 16 threads, each per-
forming create-append-sync, read-append-sync, read, and
delete operations on a fileset of 10,000 16KB files.

We used this Mail-Server workload to test the scalabil-
ity of SeMiNAS by gradually increasing the number of NFS
clients. As shown in Figure 10, both the baseline and SeMi-
NAS scales well as the number of clients grows. The relative

l  SeMiNAS makes web-proxy
u  4−6% slower without cache
u  9−19% faster with cache (because of TCP Nagle)

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 23

Outline

þ  Background & Motivation
þ  Design
þ  Implementation
þ  Evaluation
Ø  Conclusions

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 24

Conclusions
l  We proposed SeMiNAS to secure cloud storage
l  We designed SeMiNAS to

u  Be a middleware
u  Take advantages of NFSv4 compounds, and
u  Data Integrity eXtensions

l We implemented SeMiNAS based on
u  Add security stackable file-systems layers
u  Extend DIX to NFS

l  We evaluated SeMiNAS:
u  small performance penalty less than 26%
u  performance boost by up to 19%

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 25

Limitations & Future Work
l Limitations

u  Not safe against replay attacks
u  Does not handle side-channel attacks

l Future work
u  Efficiently detect replay attacks

§ Avoid using expensive Merkle trees
§ Synchronize file versions among proxies

u  File- and directory-name encryption
u  Transactional Compounds

 https://github.com/sbu-fsl/txn-compound

SeMiNAS: A Secure Middleware for
Wide-Area Network-Attached Storage

Q&A
Ming Chen
Erez Zadok

{mchen, ezk}@cs.stonybrook.edu

Kelong Wang
kelong@dssd.com

Arun O. Vasudevan
aov@nutanix.com

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 27

Network File System (NFS)
l An IETF standardized storage protocol
l Provides transparent remote file access
l Shares files over networks

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 28

Methodology
l Benchmaster

u  Automate multiple runs of experiments
u  Launch workloads concurrently on clients
u  Periodically collect system statistics

l Workloads
u  Data-intensive workloads
u  Metadata-intensive workloads
u  Delegation workloads
u  Filebench macro-workloads

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 29

Random Read/Write

-34%

1:1 Read-Write Ratio

5:1 Read-Write Ratio 1:5 Read-Write Ratio

-10%

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 30

File-Deletion Workload

l  Caching makes file deletion slower
u  Introduce extra network round-trip
u  Remove cache upon unlink()

l  However, SeMiNAS does not make file deletion slower

-18%

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 31

Untrusted
Public Clouds

Clients Clients

Office-1 Office-2

SeMiNAS

Untrusted
Public Clouds

Clients
SeMiNAS SeMiNAS

ClientsUntrusted
Public Clouds

Clients
SeMiNAS SeMiNAS

Clients

LAN LAN WAN WAN

NFS NFS NFS NFS

u  Goal: Securely and efficiently store and share files in
cloud for geo-distributed organizations.

u  Approach: take advantages of new opportunities in NFSv4

and Data Integrity eXtensions (DIX).

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 32

Kurma Architecture

June 6, 2016 SeMiNAS (ACM SYSTOR 2016) 33

Kurma Components

1

2

3

file system
meta-data

<BK, BV>

