

Breaking the Boundaries in Heterogeneous-ISA Datacenters

Antonio Barbalace, **Robert Lyerly**, Christopher Jelesnianski, Anthony Carno, Ho-Ren Chuang, Vincent Legout and Binoy Ravindran

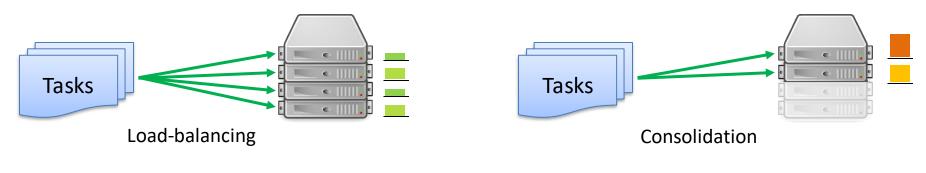
> Systems Software Research Group at Virginia Tech ssrg.ece.vt.edu

Highlight Paper Presented on April 12th, 2017 at ASPLOS in Xi'an China


The BRADLEY DEPARTMENT of ELECTRICAL and COMPUTER ENGINEERING

Introduction

Datacenters are integrating heterogeneous-ISA servers


Each image is copyright of the respective company or manufacturer. Images used here for educational purposes.

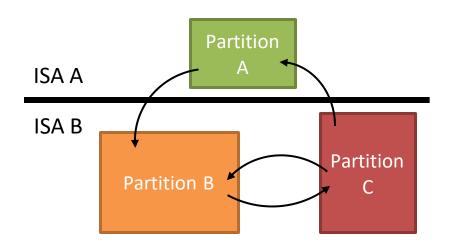
Introduction

- Energy proportionality get compute performance proportional to the amount of energy spent
- Current energy-reduction techniques migrate workloads between servers
 - Load balancing spread workload evenly across available servers
 - Consolidation group workload on minimal number of machines, idle or power down others

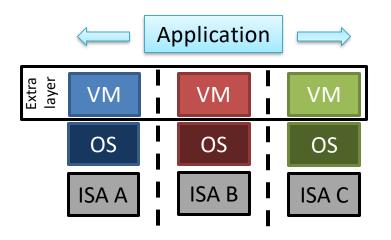
Introduction

 Natively-compiled stateful applications, e.g., HPC and key-value stores, are increasingly being run in datacenters

How can existing energy management techniques be applied to these applications in heterogeneous-ISA datacenters?



Current Approaches


Message Passing Interface (MPI)

- + High performance
- Complex code development/refactoring
- Hardcoded application partitions

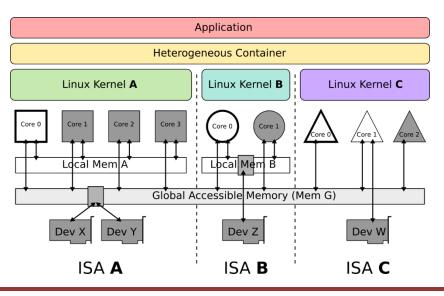
ISA Virtualization

- Managed languages, e.g., Java
 - Rewrite application from scratch
 - Performance overheads
- Dynamic binary translation, e.g., QEMU
 - + Run unmodified binaries
 - Order of magnitude slowdown

Invent the Future

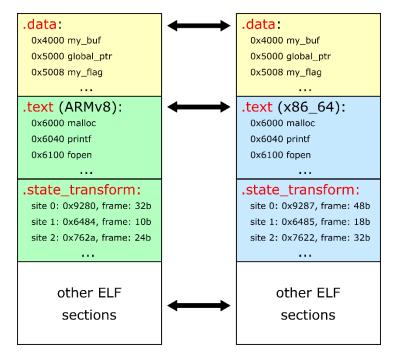
Solution

- System software stack for migrating compiled applications between heterogeneous-ISA servers
 - Replicated-kernel OS for thread and data migration
 - Compiler for creating a mostly-common virtual address space, generating metadata about ISA-specific execution state
 - Runtime for transforming ISA-specific execution state
- Allow developers to write shared memory compiled applications and leverage heterogeneity
 - Legacy code works too!



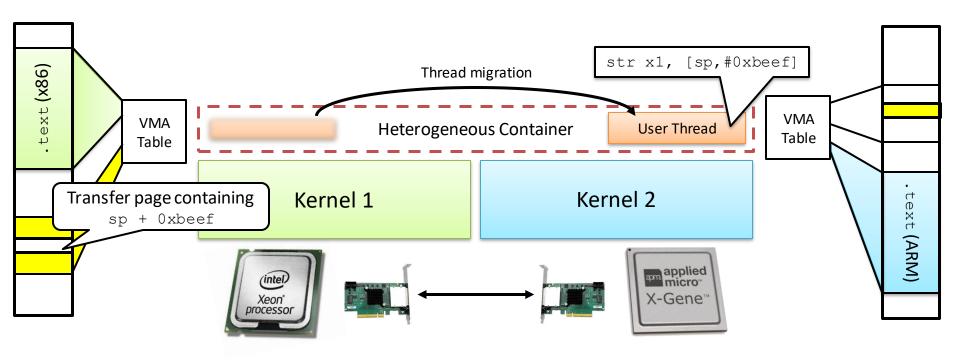
System Software Architecture

• Heterogeneous Containers – cross-ISA sub-environment


- Built on top of Popcorn Linux, a replicated-kernel OS
 - Run one kernel per-ISA
 - OS services are distributed & kept coherent using message passing
- Kernels coordinate to provide cross-ISA thread & state migration

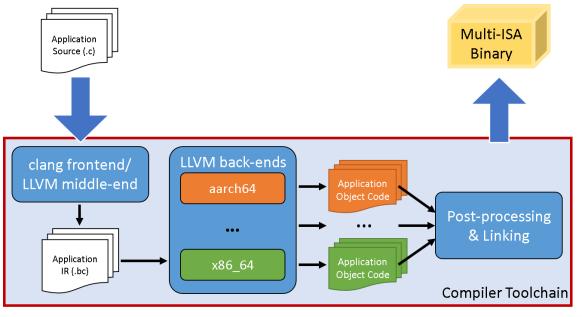
System Software Architecture

- Multi-ISA Binaries migratable across ISAs
 - Application source compiled once per ISA
 - Single .data section, multiple .text sections (one per-ISA)
 - Minimize inter-ISA state transformation costs for cross-ISA migration
 - Global data (.data), code (.text) and thread-local storage aligned across all compilations
 - State transformation metadata added to binary for translating registers/stack between ISA-specific formats

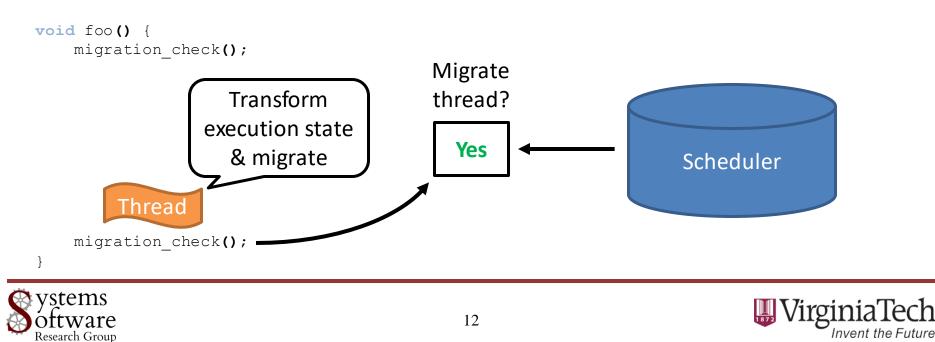

Operating System

- Thread migration & heterogeneous continuations
 - Kernels cooperate to migrate user-space thread contexts between ISAs
 - Kernel maps user-space PC, SP and FBP registers between ISAs
- On-demand page migration
 - Migrate memory pages between kernels as they are accessed by the application
 - Extend the page fault handler
 - Memory region aliasing for ISA-specific sections (e.g., .text)

Operating System



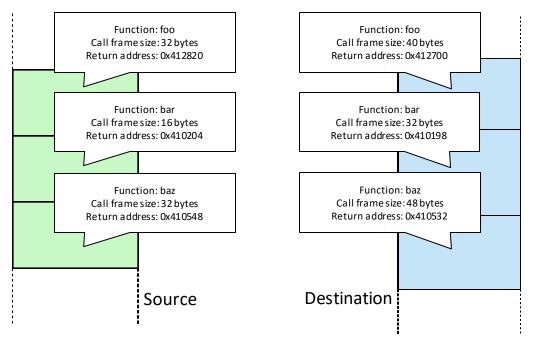
Compiler Toolchain


- Built on top of clang/LLVM
 - clang/LLVM 3.7.1, GNU gold 2.27 (~7k LoC)
 - Virtual address space alignment tool (~1.5k LoC)
 - State transformation runtime linked into application (~5k LoC)

Compiler Toolchain

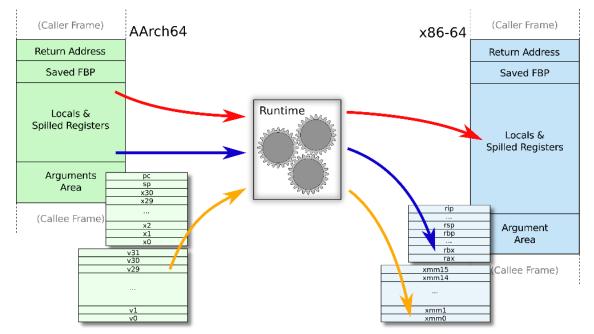
- Insert migration points into code
 - Can only transform stack at equivalence points
 - Direct mapping of execution state between ISA-specific formats
 - Scheduler cannot migrate threads at arbitrary points, must signal threads to initiate migration process

State Transformation Runtime


- Transform registers & stack between ISA-specific formats
- Runtime transforms state before migration
 - Attaches to a thread's registers/stack
 - Reads compiler metadata describing function activation layouts
 - Rewrites stack in its entirety from source to destination ISA format
- After transformation, runtime invokes migration
 - Passes destination ISA's register state and stack to OS's thread migration service

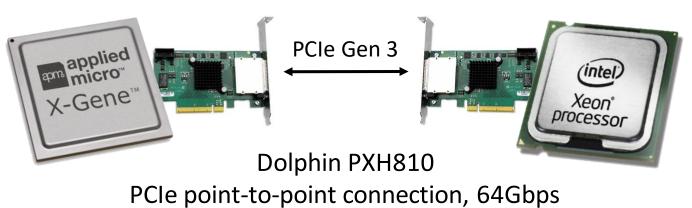
State Transformation Runtime

- Two phases to State Transformation
 - 1. Unwind current stack to find current live activations & size new stack
 - 2. Rewrite a frame at a time, from outermost frame inwards



State Transformation Runtime

- Two phases to State Transformation
 - 1. Unwind current stack to find current live activations & size new stack
 - 2. Rewrite a frame at a time, from outermost frame inwards

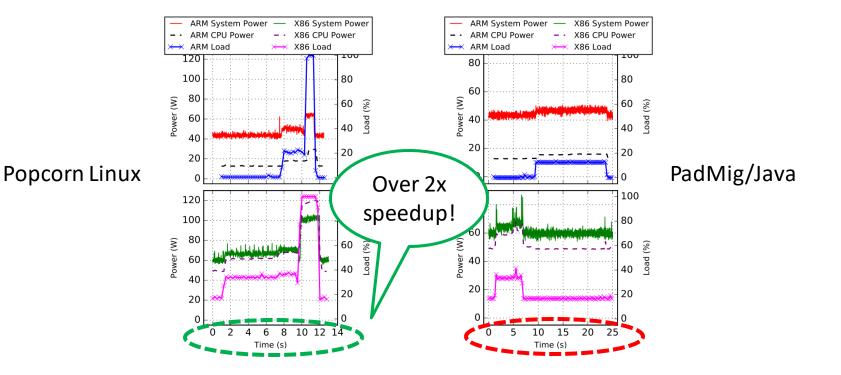


Evaluation

- APM X-Gene 1
 - 8 cores @ 2.4GHz
 - 8MB LLC, 32GB RAM
 - 40nm process, 50W TDP
 - Measured via on-board sensor
 - Estimated power consumption scaled to 22nm using McPAT

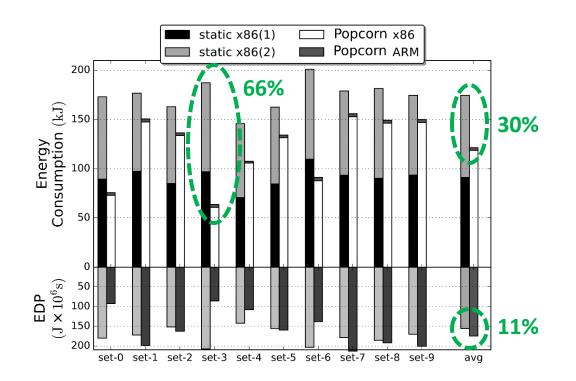
- Intel Xeon E5-1650v2
 - 6 cores @ 3.5GHz (3.9GHz turbo)
 - Hyperthreading disabled
 - 12MB LLC, 16GB RAM
 - 22nm process, 130W TDP
 - Measured via RAPL

Evaluation


- Benchmarks
 - NAS Parallel Benchmarks (NPB), classes A, B & C
- Comparison: PadMig/Java
 - Source-to-source compiler inserts migration code into application
 - Migrates thread & data using Java reflection/serialization
- Scheduling
 - Periodic workload each set consists of 5 waves of up to 14 jobs
 - Uniformly sampled from NPB (all classes)
 - Waves arrive every 60-240 seconds
 - Comparison against 2 x Intel Xeon E5-1650v2 w/o migration

Results

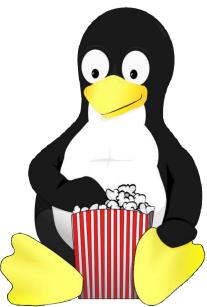
Comparison: migrating NPB IS with PadMig



Results

• Scheduling comparison to homogeneous setup

Conclusion


- Datacenters are adopting heterogeneous-ISA servers
- Proposed a full system software redesign to enable cross-ISA migration for compiled applications
 - Compiler builds multi-ISA binaries
 - OS enables cross-ISA thread and data migration
 - State transformation runtime converts ISA-specific data
 - Allows developers to use shared-memory programming model
- Implemented prototype & demonstrated effectiveness
 - Saved on average 30% and up to 66% energy for bursty workloads

More Information

 Popcorn Linux is open source and available online at <u>http://popcornlinux.org</u>

Acknowledgements

- The authors would like to thank Christopher Rossbach and Malte Schwarzkopf for their invaluable comments on an early version of the paper, and the anonymous reviewers for their insightful feedback
- Logos downloaded from:
 - Intel: <u>https://commons.wikimedia.org/wiki/File:Intel-logo.svg</u>
 - ARM: https://commons.wikimedia.org/wiki/File:ARM_logo.svg
 - Cavium: <u>http://www.prnewswire.com/news-releases/cavium-announces-thunderx2-300276536.html</u>
 - Applied Micro: <u>https://www.forbes.com/sites/patrickmoorhead/2015/11/27/whats-the-significance-of-applied-micro-circuits-x-gene-3-and-x-tend-interconnect/#7f6797cb4384</u>
 - Qualcomm: <u>https://commons.wikimedia.org/wiki/File:Qualcomm-Logo.svg</u>
 - OpenPOWER: https://commons.wikimedia.org/wiki/File:Openpower-logo-wht-bg_logo-wht-bg.jpg
 - IBM: <u>https://commons.wikimedia.org/wiki/File:IBM_logo.svg</u>
 - Google: <u>https://commons.wikimedia.org/wiki/File:Google_2015_logo.svg</u>
 - Rackspace: <u>https://www.sec.gov/Archives/edgar/data/1107694/000110769416000063/rackspacelogoclra07.jpg</u>
- This work is supported in part by ONR under grants N00014-13-1-0317 and N00014-16-1-2711, AFOSR under grant FA9550-14-1-0163, and NAVSEA/NEEC under grants 3003279297 and N00174-16-C-0018. Any opinions, findings, and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of ONR, AFOSR, and NAVSEA.

Questions?

