
Breaking the Boundaries in
Heterogeneous-ISA Datacenters

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno,
Ho-Ren Chuang, Vincent Legout and Binoy Ravindran

Systems Software Research Group at Virginia Tech
ssrg.ece.vt.edu

Highlight Paper
Presented on April 12th, 2017 at ASPLOS in Xi’an China

2

Introduction

• Datacenters are integrating heterogeneous-ISA
servers

Each image is copyright of the respective company or manufacturer. Images used here for educational purposes.

3

Introduction

• Energy proportionality – get compute performance
proportional to the amount of energy spent

• Current energy-reduction techniques migrate
workloads between servers
– Load balancing – spread workload evenly across available servers

– Consolidation – group workload on minimal number of machines, idle
or power down others

Tasks

Load-balancing

Tasks

Consolidation

4

Introduction

• Natively-compiled stateful applications, e.g., HPC and
key-value stores, are increasingly being run in
datacenters

How can existing energy management
techniques be applied to these applications in

heterogeneous-ISA datacenters?

5

Current Approaches

Message Passing Interface (MPI)
+ High performance
‒ Complex code development/refactoring
‒ Hardcoded application partitions

Partition
A

Partition
CPartition B

ISA A

ISA B

ISA Virtualization
• Managed languages, e.g., Java

‒ Rewrite application from scratch
‒ Performance overheads

• Dynamic binary translation, e.g., QEMU
+ Run unmodified binaries
‒ Order of magnitude slowdown

Application

Ex
tr

a
la

ye
r

VM VM VM

OS OS OS

ISA A ISA B ISA C

6

Solution

• System software stack for migrating compiled
applications between heterogeneous-ISA servers
– Replicated-kernel OS for thread and data migration

– Compiler for creating a mostly-common virtual address space,
generating metadata about ISA-specific execution state

– Runtime for transforming ISA-specific execution state

• Allow developers to write shared memory compiled
applications and leverage heterogeneity
– Legacy code works too!

7

System Software Architecture

• Heterogeneous Containers – cross-ISA sub-environment
– Built on top of Popcorn Linux, a replicated-kernel OS

• Run one kernel per-ISA

• OS services are distributed & kept coherent using message passing

– Kernels coordinate to provide cross-ISA thread & state migration

8

System Software Architecture

• Multi-ISA Binaries – migratable
across ISAs
– Application source compiled once per ISA

• Single .data section, multiple .text
sections (one per-ISA)

– Minimize inter-ISA state transformation
costs for cross-ISA migration

• Global data (.data), code (.text) and
thread-local storage aligned across all
compilations

• State transformation metadata added to
binary for translating registers/stack
between ISA-specific formats

9

Operating System

• Thread migration & heterogeneous continuations
– Kernels cooperate to migrate user-space thread contexts between ISAs

– Kernel maps user-space PC, SP and FBP registers between ISAs

• On-demand page migration
– Migrate memory pages between kernels as they are accessed by the

application

• Extend the page fault handler

– Memory region aliasing for ISA-specific sections (e.g., .text)

10

Operating System

VMA
Table

Kernel 2Kernel 1

Heterogeneous Container User ThreadVMA
Table

str x1, [sp,#0xbeef]

Transfer page containing
sp + 0xbeef

.
t
e
x
t

(x
8

6
)

.
t
e
x
t

(A
R

M
)

Thread migration

11

Compiler Toolchain

• Built on top of clang/LLVM
– clang/LLVM 3.7.1, GNU gold 2.27 (~7k LoC)

– Virtual address space alignment tool (~1.5k LoC)

– State transformation runtime linked into application (~5k LoC)

12

Compiler Toolchain

• Insert migration points into code
– Can only transform stack at equivalence points

• Direct mapping of execution state between ISA-specific formats

– Scheduler cannot migrate threads at arbitrary points, must signal
threads to initiate migration process

Migrate
thread?

Scheduler

void foo() {

migration_check();

migration_check();

}

Thread

Yes

Transform
execution state

& migrate

13

State Transformation Runtime

• Transform registers & stack between ISA-specific
formats

• Runtime transforms state before migration
– Attaches to a thread’s registers/stack

– Reads compiler metadata describing function activation layouts

– Rewrites stack in its entirety from source to destination ISA format

• After transformation, runtime invokes migration
– Passes destination ISA’s register state and stack to OS’s thread

migration service

14

State Transformation Runtime

• Two phases to State Transformation
1. Unwind current stack to find current live activations & size new stack

2. Rewrite a frame at a time, from outermost frame inwards

Source Destination

3

2

Function: baz
Call frame size: 32 bytes

Return address: 0x410548

Function: bar
Call frame size: 16 bytes

Return address: 0x410204

Function: foo
Call frame size: 32 bytes

Return address: 0x412820

Function: foo
Call frame size: 40 bytes

Return address: 0x412700

Function: bar
Call frame size: 32 bytes

Return address: 0x410198

Function: baz
Call frame size: 48 bytes

Return address: 0x410532

15

State Transformation Runtime

• Two phases to State Transformation
1. Unwind current stack to find current live activations & size new stack

2. Rewrite a frame at a time, from outermost frame inwards

16

Evaluation

• APM X-Gene 1
– 8 cores @ 2.4GHz

– 8MB LLC, 32GB RAM

– 40nm process, 50W TDP
• Measured via on-board sensor

• Estimated power consumption
scaled to 22nm using McPAT

• Intel Xeon E5-1650v2
– 6 cores @ 3.5GHz (3.9GHz turbo)

• Hyperthreading disabled

– 12MB LLC, 16GB RAM

– 22nm process, 130W TDP
• Measured via RAPL

PCIe Gen 3

Dolphin PXH810
PCIe point-to-point connection, 64Gbps

17

Evaluation

• Benchmarks
– NAS Parallel Benchmarks (NPB), classes A, B & C

• Comparison: PadMig/Java
– Source-to-source compiler inserts migration code into application

– Migrates thread & data using Java reflection/serialization

• Scheduling
– Periodic workload – each set consists of 5 waves of up to 14 jobs

• Uniformly sampled from NPB (all classes)

• Waves arrive every 60-240 seconds

– Comparison against 2 x Intel Xeon E5-1650v2 w/o migration

18

Results

• Comparison: migrating NPB IS with PadMig

Popcorn Linux PadMig/JavaOver 2x
speedup!

19

Results

• Scheduling comparison to homogeneous setup

30%

66%

11%

20

Conclusion

• Datacenters are adopting heterogeneous-ISA servers

• Proposed a full system software redesign to enable cross-ISA
migration for compiled applications
– Compiler builds multi-ISA binaries

– OS enables cross-ISA thread and data migration

– State transformation runtime converts ISA-specific data

– Allows developers to use shared-memory programming model

• Implemented prototype & demonstrated effectiveness
– Saved on average 30% and up to 66% energy for bursty workloads

21

More Information

• Popcorn Linux is open source and available online at
http://popcornlinux.org

http://popcornlinux.org/

22

Acknowledgements

• The authors would like to thank Christopher Rossbach and Malte Schwarzkopf for their invaluable comments on an
early version of the paper, and the anonymous reviewers for their insightful feedback

• Logos downloaded from:
• Intel: https://commons.wikimedia.org/wiki/File:Intel-logo.svg
• ARM: https://commons.wikimedia.org/wiki/File:ARM_logo.svg
• Cavium: http://www.prnewswire.com/news-releases/cavium-announces-thunderx2-300276536.html
• Applied Micro: https://www.forbes.com/sites/patrickmoorhead/2015/11/27/whats-the-significance-of-applied-micro-circuits-x-

gene-3-and-x-tend-interconnect/#7f6797cb4384
• Qualcomm: https://commons.wikimedia.org/wiki/File:Qualcomm-Logo.svg
• OpenPOWER: https://commons.wikimedia.org/wiki/File:Openpower-logo-wht-bg_logo-wht-bg.jpg
• IBM: https://commons.wikimedia.org/wiki/File:IBM_logo.svg
• Google: https://commons.wikimedia.org/wiki/File:Google_2015_logo.svg
• Rackspace: https://www.sec.gov/Archives/edgar/data/1107694/000110769416000063/rackspacelogoclra07.jpg

• This work is supported in part by ONR under grants N00014-13-1-0317 and N00014-16-1-2711, AFOSR under grant
FA9550-14-1-0163, and NAVSEA/NEEC under grants 3003279297 and N00174-16-C-0018. Any opinions, findings,
and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect
the views of ONR, AFOSR, and NAVSEA.

https://commons.wikimedia.org/wiki/File:Intel-logo.svg
https://commons.wikimedia.org/wiki/File:ARM_logo.svg
http://www.prnewswire.com/news-releases/cavium-announces-thunderx2-300276536.html
https://www.forbes.com/sites/patrickmoorhead/2015/11/27/whats-the-significance-of-applied-micro-circuits-x-gene-3-and-x-tend-interconnect/#7f6797cb4384
https://commons.wikimedia.org/wiki/File:Qualcomm-Logo.svg
https://commons.wikimedia.org/wiki/File:Openpower-logo-wht-bg_logo-wht-bg.jpg
https://commons.wikimedia.org/wiki/File:IBM_logo.svg
https://commons.wikimedia.org/wiki/File:Google_2015_logo.svg
https://www.sec.gov/Archives/edgar/data/1107694/000110769416000063/rackspacelogoclra07.jpg

23

Questions?

