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Introduction

• Datacenters are integrating heterogeneous-ISA 
servers

Each image is copyright of the respective company or manufacturer.  Images used here for educational purposes.
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Introduction

• Energy proportionality – get compute performance 
proportional to the amount of energy spent

• Current energy-reduction techniques migrate 
workloads between servers
– Load balancing – spread workload evenly across available servers

– Consolidation – group workload on minimal number of machines, idle 
or power down others

Tasks

Load-balancing

Tasks

Consolidation
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Introduction

• Natively-compiled stateful applications, e.g., HPC and 
key-value stores, are increasingly being run in 
datacenters

How can existing energy management 
techniques be applied to these applications in 

heterogeneous-ISA datacenters?
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Current Approaches

Message Passing Interface (MPI)
+ High performance
‒ Complex code development/refactoring
‒ Hardcoded application partitions

Partition 
A

Partition 
CPartition B

ISA A

ISA B

ISA Virtualization
• Managed languages, e.g., Java

‒ Rewrite application from scratch
‒ Performance overheads

• Dynamic binary translation, e.g., QEMU
+ Run unmodified binaries
‒ Order of magnitude slowdown
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Solution

• System software stack for migrating compiled 
applications between heterogeneous-ISA servers
– Replicated-kernel OS for thread and data migration

– Compiler for creating a mostly-common virtual address space, 
generating metadata about ISA-specific execution state

– Runtime for transforming ISA-specific execution state

• Allow developers to write shared memory compiled 
applications and leverage heterogeneity
– Legacy code works too!
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System Software Architecture

• Heterogeneous Containers – cross-ISA sub-environment
– Built on top of Popcorn Linux, a replicated-kernel OS

• Run one kernel per-ISA

• OS services are distributed & kept coherent using message passing

– Kernels coordinate to provide cross-ISA thread & state migration
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System Software Architecture

• Multi-ISA Binaries – migratable 
across ISAs
– Application source compiled once per ISA

• Single .data section, multiple .text
sections (one per-ISA)

– Minimize inter-ISA state transformation 
costs for cross-ISA migration

• Global data (.data), code (.text) and 
thread-local storage aligned across all 
compilations

• State transformation metadata added to 
binary for translating registers/stack 
between ISA-specific formats
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Operating System

• Thread migration & heterogeneous continuations
– Kernels cooperate to migrate user-space thread contexts between ISAs

– Kernel maps user-space PC, SP and FBP registers between ISAs

• On-demand page migration
– Migrate memory pages between kernels as they are accessed by the 

application

• Extend the page fault handler

– Memory region aliasing for ISA-specific sections (e.g., .text)
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Operating System
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Compiler Toolchain

• Built on top of clang/LLVM
– clang/LLVM 3.7.1, GNU gold 2.27 (~7k LoC)

– Virtual address space alignment tool (~1.5k LoC)

– State transformation runtime linked into application (~5k LoC)
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Compiler Toolchain

• Insert migration points into code
– Can only transform stack at equivalence points

• Direct mapping of execution state between ISA-specific formats

– Scheduler cannot migrate threads at arbitrary points, must signal 
threads to initiate migration process

Migrate 
thread?

Scheduler

void foo() {

migration_check();

migration_check();

}

Thread

Yes

Transform 
execution state 

& migrate
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State Transformation Runtime

• Transform registers & stack between ISA-specific 
formats

• Runtime transforms state before migration
– Attaches to a thread’s registers/stack

– Reads compiler metadata describing function activation layouts

– Rewrites stack in its entirety from source to destination ISA format

• After transformation, runtime invokes migration
– Passes destination ISA’s register state and stack to OS’s thread 

migration service
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State Transformation Runtime

• Two phases to State Transformation
1. Unwind current stack to find current live activations & size new stack

2. Rewrite a frame at a time, from outermost frame inwards

Source Destination

3

2

Function: baz
Call frame size: 32 bytes

Return address: 0x410548

Function: bar
Call frame size: 16 bytes

Return address: 0x410204

Function: foo
Call frame size: 32 bytes

Return address: 0x412820

Function: foo
Call frame size: 40 bytes

Return address: 0x412700

Function: bar
Call frame size: 32 bytes

Return address: 0x410198

Function: baz
Call frame size: 48 bytes

Return address: 0x410532
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State Transformation Runtime

• Two phases to State Transformation
1. Unwind current stack to find current live activations & size new stack

2. Rewrite a frame at a time, from outermost frame inwards
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Evaluation

• APM X-Gene 1
– 8 cores @ 2.4GHz

– 8MB LLC, 32GB RAM

– 40nm process, 50W TDP
• Measured via on-board sensor

• Estimated power consumption 
scaled to 22nm using McPAT

• Intel Xeon E5-1650v2
– 6 cores @ 3.5GHz (3.9GHz turbo)

• Hyperthreading disabled

– 12MB LLC, 16GB RAM

– 22nm process, 130W TDP
• Measured via RAPL

PCIe Gen 3

Dolphin PXH810
PCIe point-to-point connection, 64Gbps
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Evaluation

• Benchmarks
– NAS Parallel Benchmarks (NPB), classes A, B & C

• Comparison: PadMig/Java
– Source-to-source compiler inserts migration code into application

– Migrates thread & data using Java reflection/serialization

• Scheduling
– Periodic workload – each set consists of 5 waves of up to 14 jobs

• Uniformly sampled from NPB (all classes)

• Waves arrive every 60-240 seconds

– Comparison against 2 x Intel Xeon E5-1650v2 w/o migration
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Results

• Comparison: migrating NPB IS with PadMig

Popcorn Linux PadMig/JavaOver 2x 
speedup!
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Results

• Scheduling comparison to homogeneous setup

30%

66%

11%
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Conclusion

• Datacenters are adopting heterogeneous-ISA servers

• Proposed a full system software redesign to enable cross-ISA 
migration for compiled applications
– Compiler builds multi-ISA binaries

– OS enables cross-ISA thread and data migration

– State transformation runtime converts ISA-specific data

– Allows developers to use shared-memory programming model

• Implemented prototype & demonstrated effectiveness
– Saved on average 30% and up to 66% energy for bursty workloads
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More Information

• Popcorn Linux is open source and available online at 
http://popcornlinux.org

http://popcornlinux.org/
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Questions?


