
Erasure Coding for Small Objects

in In-Memory Key-Value Storage

Matt M. T. Yiu, Helen H. W. Chan, Patrick P. C. Lee

The Chinese University of Hong Kong

SYSTOR 2017

1

Introduction

 In-memory key-value (KV) stores are widely deployed for

scalable, low-latency access

• Examples: Memcached, Redis, VoltDB, RAMCloud

 Failures are prevalent in distributed storage systems

• Replication in DRAM?

• High storage overheads

• Replication in secondary storage (e.g., HDDs)?

• High latency to replicas (especially for random I/Os)

• Erasure coding

• Minimum data redundancy

• Redundant information is stored entirely in memory for low-latency

accesses fast recovery under stragglers and failures

2

Erasure Coding

 Divide data to k data chunks

 Encode data chunks to additional n-k parity chunks

• Each collection of n data/parity chunks is called a stripe

 Distribute each stripe to n different nodes

• Many stripes are stored in large-scale systems

 Fault tolerance: any k out of n nodes can recover file data

 Redundancy:
𝑛

𝑘

3

Challenges

 Erasure coding is expensive in data updates and failure

recovery

• Many solutions in the literature

 Real-life in-memory storage workloads are dominated by

small-size objects

• Keys and values can be as small as few bytes (e.g., 2-3 bytes of

values) [Atikoglu, Sigmetrics’12]

• Erasure coding is often used for large objects

 In-memory KV stores issue decentralized requests

without centralized metadata lookup

• Need to maintain data consistency when failures happen

4

Our Contributions

 Build MemEC, a high-availability, erasure-coding-based

in-memory KV store that aims for

• Low-latency access

• Fast recovery (under stragglers/failures)

• Storage-efficient

 Propose a new all-encoding data model

 Ensure graceful transitions between normal mode and

degraded mode

 Evaluate MemEC prototype with YCSB workloads

5

Existing Data Models

 All-replication

• Store multiple replicas for each object in memory

• Used by many KV stores (e.g., Redis)

Node #1

Key

Value

Metadata

Reference

Node #2

Key

Value

Metadata

Reference

Node #i

Key

Value

Metadata

Reference

...

6

Existing Data Models

 Hybrid-encoding

• Assumption: Value size is sufficiently large

• Erasure coding to values only

• Replication for key, metadata, and reference to the object

• Used by LH*RS [TODS‘05], Cocytus [FAST‘16]

Node #1

Key

Metadata

Reference

Node #2 Node #k

...

Value

Key

Metadata

Reference

Value

Key

Metadata

Reference

Value

Node #(k+1)

Key

Metadata

Reference

Parity

Node #n

Key

Metadata

Reference

Parity

... Replication

Erasure
coding

7

Our data model: All-encoding

 Apply erasure coding to objects in entirety

 Design specific index structures to limit storage

8

All-encoding: Data Organization

• Divide storage into fixed-
size chunks (4 KB) as units
of erasure coding

• A unique fixed-size chunk
ID (8 bytes) for chunk
identification in a server

9

All-encoding: Data Organization

• Each data chunk contains
multiple objects

• Each object starts with
fixed-size metadata,
followed by variable-size
key and value

10

All-encoding: Data Organization

• Append new objects to a data chunk
until the chunk size limit is reached, and
seal the data chunk

• Sealed data chunks are encoded to form
parity chunks belonging to same stripe

11

All-encoding: Data Organization

• Chunk index maps a chunk ID
to a chunk reference

• Object index maps a key to an
object reference

• Use cukcoo hashing
• No need to keep redundancy

for both indexes in memory

12

 Key-to-chunk mappings are needed

for failure recovery, but can be

stored in secondary storage

All-encoding: Chunk ID

 Chunk ID has three fields:

• Stripe list ID: identifying the set of n data

and parity servers for the stripe

• Determined by hashing a key

• Stripe ID: identifying the stripe

• Each server increments a local counter

when a data chunk is sealed

• Chunk position: from 0 to n – 1

 Chunks of the same stripe has the

same stripe list ID and same stripe ID

Main Memory

Chunk ID O1

O2 O3

O4 O5 O6

Chunk ID O1

O2 O3

O4 O5 O6

Chunk ID O1

O2 O3

O4 O5 O6

...
8 bytes +
4 KB

8 bytes +
4 KB

8 bytes +
4 KB

13

Analysis

 All-encoding achieves much lower redundancy

14

MemEC Architecture

Unified memory

ServerProxy
Client

Proxy

Coordinator

Server
Server

Object

SET / GET /
UPDATE /
DELETE

15

Only in degraded mode

Client

Fault Tolerance

 In normal mode, requests are decentralized

• Coordinator is not on I/O path

 When a server fails, proxies move from decentralized

requests to degraded requests managed by coordinator

• Ensure data consistency by reverting any inconsistent changes

or replaying incomplete requests

• Requests that do not involve the failed server remain

decentralized

 Rationale: normal mode is common case; coordinator is

only involved in degraded mode

16

Server States

 Coordinator maintains a state for each server and

instructs all proxies how to communicate with a server

Normal Degraded

Intermediate

Coordinated
Normal

Server
failed

Migration
completed

Server
restored

Inconsistency
resolved

17

Server States

 All proxies and working servers share the same view of

server states

 Two-phase protocol:

• When coordinator detects a server failure, it notifies all proxies to

finish all decentralized requests (intermediate state)

• Each proxy notifies coordinator when finished

• Coordinator notifies all proxies to issues degraded requests via

coordinator (degraded state)

 Implemented via atomic broadcast

18

Evaluation

 Testbed under commodity settings:

• 16 servers

• 4 proxies

• 1 coordinator

• 1 Gbps Ethernet

 YCSB benchmarking (4 instances, 64 threads each)

• Key size: 24 bytes

• Value size: 8 bytes and 32 bytes (large values also considered)

• Do not consider range queries

19

Impact of Transient Failures

Failures occur before load phase:
• Latency of SET in load phase

increases by 11.5% with
degraded request handing

• For Workload A, latencies of
UPDATE and GET increase by
53.3% and 38.2%, resp.

20

Impact of Transient Failures

Failures occur after load phase:
• Latencies of GET and UPDATE

increase by 180.3% and
177.5%, resp.

• Latency of GET in Workload C
only increase by 6.69%

21

State Transition Overhead

Average elapsed times of state
transitions with 95% confidence

Difference between two elapsed
times is mainly caused by
reverting parity updates of
incomplete requests

Elapsed time includes data
migration from the redirected
server to the restored server, so
increases a lot

22

Conclusion

 A case of applying erasure coding to build a high-available

in-memory KV store: MemEC

• Enable fast recovery by keeping redundancy entirely in memory

 Two key designs:

• Support of small objects

• Graceful transition between decentralized requests in normal mode

and coordinated degraded requests in degraded mode

 Prototype and experiments

 Source code: https://github.com/mtyiu/memec

23

https://github.com/mtyiu/memec

