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Introduction

» In-memory key-value (KV) stores are widely deployed for
scalable, low-latency access
« Examples: Memcached, Redis, VoltDB, RAMCloud

» Failures are prevalent in distributed storage systems
* Replication in DRAM?
« High storage overheads
* Replication in secondary storage (e.g., HDDs)?
» High latency to replicas (especially for random 1/Os)
« Erasure coding

« Minimum data redundancy

* Redundant information is stored entirely in memory for low-latency
accesses > fast recovery under stragglers and failures



Erasure Coding

» Divide data to k data chunks

» Encode data chunks to additional n-k parity chunks
« Each collection of n data/parity chunks is called a stripe

» Distribute each stripe to n different nodes
* Many stripes are stored in large-scale systems

» Fault tolerance: any k out of n nodes can recover file data
> Redundancy:%



Challenges

» Erasure coding is expensive in data updates and failure
recovery
* Many solutions in the literature

» Real-life iIn-memory storage workloads are dominated by
small-size objects

« Keys and values can be as small as few bytes (e.g., 2-3 bytes of
values) [Atikoglu, Sigmetrics’12]

« Erasure coding is often used for large objects

» In-memory KV stores issue decentralized requests
without centralized metadata lookup
* Need to maintain data consistency when failures happen



Our Contributions

» Build MemEC, a high-availabllity, erasure-coding-based
In-memory KV store that aims for
« Low-latency access
« Fastrecovery (under stragglers/failures)
« Storage-efficient

» Propose a new all-encoding data model

» Ensure graceful transitions between normal mode and
degraded mode

» Evaluate MemEC prototype with YCSB workloads



Existing Data Models

» All-replication
« Store multiple replicas for each object in memory
* Used by many KV stores (e.g., Redis)
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Existing Data Models

» Hybrid-encoding
« Assumption: Value size is sufficiently large
« Erasure coding to values only

* Replication for key, metadata, and reference to the object
« Used by LH*RS [TODS‘05], Cocytus [FAST'16]
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Our data model: All-encoding

» Apply erasure coding to objects in entirety

» Design specific index structures to limit storage
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All-encoding: Data Organization

Chunkindex |  patachunk Parity chunk
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of erasure coding

A unique fixed-size chunk
ID (8 bytes) for chunk
identification in a server




All-encoding: Data Organization

Chunkindex —  patachunk Parity chunk
J | E
Chunk 77 | Chunk 1D - Chunk D
ID | |{}{ Object || Object || ¢ Ddé ;
Chunk reference | Db-]ECt lllfunna:.tmn

Object index
/ Each data chunk contains
K'E}" R . .
B multiple objects

— Each object starts with
Object reference -

fixed-size metadata,
followed by variable-size
key and value

10



All-encoding: Data Organization

Chunk index
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Append new objects to a data chunk
until the chunk size limit is reached, and

seal the data chunk
Sealed data chunks are encoded to form
parity chunks belonging to same stripe
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All-encoding: Data Organization
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for failure recovery, but can be
stored in secondary storage
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All-encoding: Chunk ID

» Chunk ID has three fields:

« Stripe list ID: identifying the set of n data
and parity servers for the stripe

« Determined by hashing a key
« Stripe ID: identifying the stripe

 Each server increments a local counter
when a data chunk is sealed

 Chunk position:fromOton-1

» Chunks of the same stripe has the
same stripe list ID and same stripe ID

»
P
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8 bytes +
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8 bytes +
4 KB
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Analysis

» All-encoding achieves much lower redundancy
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MemEC Architecture

Client

|

Object

SET / GET /
UPDATE /
DELETE

|

Only in degraded mode

Unified memory
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Fault Tolerance

» In normal mode, requests are decentralized
« Coordinator is not on I/O path

» When a server fails, proxies move from decentralized
requests to degraded requests managed by coordinator

« Ensure data consistency by reverting any inconsistent changes
or replaying incomplete requests

* Requests that do not involve the failed server remain
decentralized

» Rationale: normal mode is common case; coordinator Is
only involved in degraded mode
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Server States

» Coordinator maintains a state for each server and
Instructs all proxies how to communicate with a server

Server Intermediate Inconsistency
failed resolved

Degraded

Migration
completed

Server
restored

Coordinated
Normal
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Server States

» All proxies and working servers share the same view of
server states

» Two-phase protocol:

* When coordinator detects a server failure, it notifies all proxies to
finish all decentralized requests (intermediate state)

« Each proxy notifies coordinator when finished

« Coordinator notifies all proxies to issues degraded requests via
coordinator (degraded state)

» Implemented via atomic broadcast
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Evaluation

» Testbed under commodity settings:
* 16 servers
* 4 proxies
« 1 coordinator
* 1 Gbps Ethernet

» YCSB benchmarking (4 instances, 64 threads each)
« Key size: 24 bytes
* Value size: 8 bytes and 32 bytes (large values also considered)
« Do not consider range queries
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Impact of Transient Failures

Normal & 2+ 1 ms O
Degraded
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Impact of Transient Failures
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State Transition Overhead

Elapsed time (ms)

State transition
Single failure | Double failure

Withreq. | 4.77 £0.79 924+ 078 Difference between two elapsed

In-p | times is mainly caused by
I Noreq. 1.74 + 0.09 491 + 0.89

- reverting parity updates of

With req. | 628.5 1439 | 667.5+27.2 incomplete requests
Tposn!
| Noreq. | 091+046 | 1.10+0.19 -
=) ¥ Elapsed time includes data
Average elapsed times of state migration from the redirected
transitions with 95% confidence server to the restored server, so

increases a lot
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Conclusion

» A case of applying erasure coding to build a high-available
In-memory KV store: MemEC
« Enable fast recovery by keeping redundancy entirely in memory

» Two key designs:
« Support of small objects

« Graceful transition between decentralized requests in normal mode
and coordinated degraded requests in degraded mode

» Prototype and experiments

» Source code: https://github.com/mtyiu/memec
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