£ P L k&
THE CHINESE UNIVERSITY OF HONG KONG

Erasure Coding for Small Objects
In In-Memory Key-Value Storage

Matt M. T. Yiu, Helen H. W. Chan, Patrick P. C. Lee
The Chinese University of Hong Kong

SYSTOR 2017

Introduction

» In-memory key-value (KV) stores are widely deployed for
scalable, low-latency access
« Examples: Memcached, Redis, VoltDB, RAMCloud

» Failures are prevalent in distributed storage systems
* Replication in DRAM?
« High storage overheads
* Replication in secondary storage (e.g., HDDs)?
» High latency to replicas (especially for random 1/Os)
« Erasure coding

« Minimum data redundancy

* Redundant information is stored entirely in memory for low-latency
accesses > fast recovery under stragglers and failures

Erasure Coding

» Divide data to k data chunks

» Encode data chunks to additional n-k parity chunks
« Each collection of n data/parity chunks is called a stripe

» Distribute each stripe to n different nodes
* Many stripes are stored in large-scale systems

» Fault tolerance: any k out of n nodes can recover file data
> Redundancy:%

Challenges

» Erasure coding is expensive in data updates and failure
recovery
* Many solutions in the literature

» Real-life iIn-memory storage workloads are dominated by
small-size objects

« Keys and values can be as small as few bytes (e.g., 2-3 bytes of
values) [Atikoglu, Sigmetrics’12]

« Erasure coding is often used for large objects

» In-memory KV stores issue decentralized requests
without centralized metadata lookup
* Need to maintain data consistency when failures happen

Our Contributions

» Build MemEC, a high-availabllity, erasure-coding-based
In-memory KV store that aims for
« Low-latency access
« Fastrecovery (under stragglers/failures)
« Storage-efficient

» Propose a new all-encoding data model

» Ensure graceful transitions between normal mode and
degraded mode

» Evaluate MemEC prototype with YCSB workloads

Existing Data Models

» All-replication
« Store multiple replicas for each object in memory
* Used by many KV stores (e.g., Redis)

Key Key Key

Value Value Value
Metadata Metadata | - || Metadata

Reference Reference Reference

Existing Data Models

» Hybrid-encoding
« Assumption: Value size is sufficiently large
« Erasure coding to values only

* Replication for key, metadata, and reference to the object
« Used by LH*RS [TODS‘05], Cocytus [FAST'16]

Key
Metadata Metadata | ° - Metadata Metadata

Reference Reference Reference Reference

Node #1 Node #2 Node #k Node #(k+1) Node #n

Our data model: All-encoding

» Apply erasure coding to objects in entirety

» Design specific index structures to limit storage

Chunk index

—— . Data chunk Parity chunk
Chunk/ Chunk 1D Chunk ID I
D . - —
—+ Object || Object
L ! : . . Coded
— | ' | 5 information
Chunk reference [|: Object & g n

Object index
/ Metadata Key Value
Key L

Object reference -

All-encoding: Data Organization

Chunkindex | patachunk Parity chunk
A
Chunk [T ! Chunk 1D : : Chunk ID I
D A ' : , i i 3
11| | Object || Object | |
e RN Coded [
Chunk reference [} : ' ' '
Object index
/ i E E Metadata | Key | Value
Key |1 Divide storage into fixed-
InE size chunks (4 KB) as units

-"--.___-_-_-_
Object reference -

of erasure coding

A unique fixed-size chunk
ID (8 bytes) for chunk
identification in a server

All-encoding: Data Organization

Chunkindex — patachunk Parity chunk
J | E
Chunk 77 | Chunk 1D - Chunk D
ID | |{}{ Object || Object || ¢ Ddé ;
Chunk reference | Db-]ECt lllfunna:.tmn

Object index
/ Each data chunk contains
K'E}" R . .
B multiple objects

— Each object starts with
Object reference -

fixed-size metadata,
followed by variable-size
key and value

10

All-encoding: Data Organization

Chunk index

.

Chunk
D

-

.--"--.

e

l!.F.l.l+.F.l.-.*

Chunk reference |:

Object index

y.

Key

|
|
'
+
|
|
|
|
|
|
-

I
i
T
|
I
i
+
!
I
I
I

--..___‘-_-_

Object reference

_Datachunk Parity chunk
ChunkID | ChunkID |
Object || Object |
! WEJ | Coded |
;uﬁ
Object
Metadata | Key ‘ Value ‘

Append new objects to a data chunk
until the chunk size limit is reached, and

seal the data chunk
Sealed data chunks are encoded to form
parity chunks belonging to same stripe

11

All-encoding: Data Organization

Chunkindex — : paachunk Parity chunk
A0
ID L : .
IR * Object || Object
il ! U] | Coded
—|i : | 5 information
Chunk reference [|: Object . ; 111
Object index
sl | Meta SARA® © Chunkindex maps a chunk ID
Key Litil | to a chunk reference
Object index maps a key to an
— |i bject reference
i | Object reference ' ob) .
B - Use cukcoo hash|ng
_ No need to keep redundancy
» Key-to-chunk mappings are needed for both indexes in memory

for failure recovery, but can be
stored in secondary storage

12

All-encoding: Chunk ID

» Chunk ID has three fields:

« Stripe list ID: identifying the set of n data
and parity servers for the stripe

« Determined by hashing a key
« Stripe ID: identifying the stripe

 Each server increments a local counter
when a data chunk is sealed

 Chunk position:fromOton-1

» Chunks of the same stripe has the
same stripe list ID and same stripe ID

»
P

boikails

Main Memory

8 bytes +
4 KB

8 bytes +
4 KB

8 bytes +
4 KB

13

Analysis

» All-encoding achieves much lower redundancy

> A4 . | AllRep - > | AllRep -
>4 A Hybrid a4 | Hybrid -
Q AllEnc = Q AllEnc =
% A\ g Aﬁ&"%
o A g A
=3 \, =3 A
5 . 5 ﬁ
3 % 3, a,

2 .
a4 o a,

1 10 100 1000 1 10 100 1000

Value size Value size

(@) K =8, (n, k)=(10,8) (b) K =32, (n, k)= (10, 8)

14

MemEC Architecture

Client

|

Object

SET / GET /
UPDATE /
DELETE

|

Only in degraded mode

Unified memory

15

Fault Tolerance

» In normal mode, requests are decentralized
« Coordinator is not on I/O path

» When a server fails, proxies move from decentralized
requests to degraded requests managed by coordinator

« Ensure data consistency by reverting any inconsistent changes
or replaying incomplete requests

* Requests that do not involve the failed server remain
decentralized

» Rationale: normal mode is common case; coordinator Is
only involved in degraded mode

16

Server States

» Coordinator maintains a state for each server and
Instructs all proxies how to communicate with a server

Server Intermediate Inconsistency
failed resolved

Degraded

Migration
completed

Server
restored

Coordinated
Normal

17

Server States

» All proxies and working servers share the same view of
server states

» Two-phase protocol:

* When coordinator detects a server failure, it notifies all proxies to
finish all decentralized requests (intermediate state)

« Each proxy notifies coordinator when finished

« Coordinator notifies all proxies to issues degraded requests via
coordinator (degraded state)

» Implemented via atomic broadcast

18

Evaluation

» Testbed under commodity settings:
* 16 servers
* 4 proxies
« 1 coordinator
* 1 Gbps Ethernet

» YCSB benchmarking (4 instances, 64 threads each)
« Key size: 24 bytes
* Value size: 8 bytes and 32 bytes (large values also considered)
« Do not consider range queries

19

Impact of Transient Failures

Normal & 2+ 1 ms O
Degraded

Failures occur before load phase:

* Latency of SET in load phase
a2 f, i increases by 11.5% with
- % // . degraded request handing
/.x |_? /] 7/ For Workload A, latencies of
lLoad A:UP- A UPDATE and GET increase by

95th %ile latency (ms)
OS—= W= W Ch

DATE GET 53.3% and 38.2%, resp.

20

Impact of Transient Failures

Normal O 2+ Ims O
Degoraded

Failures occur after load phase:
 Latencies of GET and UPDATE

increase by 180.3% and

o NN

A: UP—
DATE GET G

177.5%, resp.
* Latency of GET in Workload C
only increase by 6.69%

95th %ile latency (ms)
el NS RUS ISRV, N o)

> NN
SIN

T L.

T

21

State Transition Overhead

Elapsed time (ms)

State transition
Single failure | Double failure

Withreq. | 4.77 £0.79 924+ 078 Difference between two elapsed

In-p | times is mainly caused by
I Noreq. 1.74 + 0.09 491 + 0.89

- reverting parity updates of

With req. | 628.5 1439 | 667.5+27.2 incomplete requests
Tposn!
| Noreq. | 091+046 | 1.10+0.19 -
=) ¥ Elapsed time includes data
Average elapsed times of state migration from the redirected
transitions with 95% confidence server to the restored server, so

increases a lot

22

Conclusion

» A case of applying erasure coding to build a high-available
In-memory KV store: MemEC
« Enable fast recovery by keeping redundancy entirely in memory

» Two key designs:
« Support of small objects

« Graceful transition between decentralized requests in normal mode
and coordinated degraded requests in degraded mode

» Prototype and experiments

» Source code: https://github.com/mtyiu/memec

23

https://github.com/mtyiu/memec

