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Introduction

 In-memory key-value (KV) stores are widely deployed for 

scalable, low-latency access

• Examples: Memcached, Redis, VoltDB, RAMCloud

 Failures are prevalent in distributed storage systems

• Replication in DRAM?

• High storage overheads

• Replication in secondary storage (e.g., HDDs)?

• High latency to replicas (especially for random I/Os)

• Erasure coding

• Minimum data redundancy

• Redundant information is stored entirely in memory for low-latency 

accesses  fast recovery under stragglers and failures
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Erasure Coding

 Divide data to k data chunks 

 Encode data chunks to additional n-k parity chunks

• Each collection of n data/parity chunks is called a stripe

 Distribute each stripe to n different nodes

• Many stripes are stored in large-scale systems

 Fault tolerance: any k out of n nodes can recover file data

 Redundancy: 
𝑛

𝑘
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Challenges

 Erasure coding is expensive in data updates and failure 

recovery

• Many solutions in the literature

 Real-life in-memory storage workloads are dominated by 

small-size objects

• Keys and values can be as small as few bytes (e.g., 2-3 bytes of 

values) [Atikoglu, Sigmetrics’12]

• Erasure coding is often used for large objects

 In-memory KV stores issue decentralized requests

without centralized metadata lookup

• Need to maintain data consistency when failures happen
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Our Contributions

 Build MemEC, a high-availability, erasure-coding-based 

in-memory KV store that aims for

• Low-latency access

• Fast recovery  (under stragglers/failures)

• Storage-efficient 

 Propose a new all-encoding data model

 Ensure graceful transitions between normal mode and 

degraded mode

 Evaluate MemEC prototype with YCSB workloads
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Existing Data Models

 All-replication

• Store multiple replicas for each object in memory

• Used by many KV stores (e.g., Redis)
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Existing Data Models

 Hybrid-encoding

• Assumption: Value size is sufficiently large 

• Erasure coding to values only

• Replication for key, metadata, and reference to the object

• Used by LH*RS [TODS‘05], Cocytus [FAST‘16]
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Our data model: All-encoding

 Apply erasure coding to objects in entirety

 Design specific index structures to limit storage
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All-encoding: Data Organization

• Divide storage into fixed-
size chunks (4 KB) as units 
of erasure coding

• A unique fixed-size chunk 
ID (8 bytes) for chunk 
identification in a server

9



All-encoding: Data Organization

• Each data chunk contains 
multiple objects

• Each object starts with 
fixed-size metadata, 
followed by variable-size 
key and value
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All-encoding: Data Organization

• Append new objects to a data chunk 
until the chunk size limit is reached, and 
seal the data chunk

• Sealed data chunks are encoded to form 
parity chunks belonging to same stripe
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All-encoding: Data Organization

• Chunk index maps a chunk ID 
to a chunk reference

• Object index maps a key to an 
object reference

• Use cukcoo hashing
• No need to keep redundancy 

for both indexes in memory
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for failure recovery, but can be 
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All-encoding: Chunk ID

 Chunk ID has three fields:

• Stripe list ID: identifying the set of n data 

and parity servers for the stripe

• Determined by hashing a key

• Stripe ID: identifying the stripe

• Each server increments a local counter 

when a data chunk is sealed

• Chunk position: from 0 to n – 1

 Chunks of the same stripe has the 

same stripe list ID and same stripe ID
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Analysis

 All-encoding achieves much lower redundancy
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MemEC Architecture

Unified memory
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Only in degraded mode

Client



Fault Tolerance

 In normal mode, requests are decentralized

• Coordinator is not on I/O path

 When a server fails, proxies move from decentralized 

requests to degraded requests managed by coordinator

• Ensure data consistency by reverting any inconsistent changes 

or replaying incomplete requests

• Requests that do not involve the failed server remain 

decentralized

 Rationale: normal mode is common case; coordinator is 

only involved in degraded mode
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Server States

 Coordinator maintains a state for each server and 

instructs all proxies how to communicate with a server
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Server States

 All proxies and working servers share the same view of 

server states

 Two-phase protocol:

• When coordinator detects a server failure, it notifies all proxies to 

finish all decentralized requests (intermediate state)

• Each proxy notifies coordinator when finished

• Coordinator notifies all proxies to issues degraded requests via 

coordinator (degraded state)

 Implemented via atomic broadcast

18



Evaluation

 Testbed under commodity settings:

• 16 servers

• 4 proxies

• 1 coordinator

• 1 Gbps Ethernet 

 YCSB benchmarking (4 instances, 64 threads each)

• Key size: 24 bytes

• Value size: 8 bytes and 32 bytes (large values also considered)

• Do not consider range queries
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Impact of Transient Failures

Failures occur before load phase:
• Latency of SET in load phase 

increases by 11.5% with 
degraded request handing

• For Workload A, latencies of 
UPDATE and GET increase by 
53.3% and 38.2%, resp.
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Impact of Transient Failures

Failures occur after load phase:
• Latencies of GET and UPDATE 

increase by 180.3% and 
177.5%, resp.

• Latency of GET in Workload C 
only increase by 6.69%
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State Transition Overhead

Average elapsed times of state 
transitions with 95% confidence

Difference between two elapsed 
times is mainly caused by 
reverting parity updates of 
incomplete requests 

Elapsed time includes data 
migration from the redirected 
server to the restored server, so 
increases a lot

22



Conclusion

 A case of applying erasure coding to build a high-available 

in-memory KV store: MemEC

• Enable fast recovery by keeping redundancy entirely in memory  

 Two key designs:

• Support of small objects

• Graceful transition between decentralized requests in normal mode 

and coordinated degraded requests in degraded mode

 Prototype and experiments

 Source code: https://github.com/mtyiu/memec
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