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Performance characterization of NVMe-oF in the context of Flash disaggregation 

 Overview
– NVMe and NVMe-over-Fabrics

– Flash disaggregation  

 Performance characterization 
– Stress-testing remote storage 

– Disaggregating RocksDB

 Summary

Synopsis 
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 A storage protocol standard on top of PCIe:
– Standardize access to local non-volatile memory over PCIe

 The predominant protocol for PCIe-based SSD devices
– NVMe-SSDs connect through PCIe and support the standard 

 High-performance through parallelization:
– Large number of deep submission/completion queues 

 NVMe-SSDs deliver lots of IOPS/BW
– 1MIOPS, 6GB/s from a single device

– 5x more than SAS-SSD, 20x more than SATA-SSD

Non-Volatile Memory Express (NVMe)
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 Separates compute and storage to different nodes
– Storage is accessed over a network rather than locally 

 Enables independent resource scaling
– Allow flexible infrastructure tuning to dynamic loads 

– Reduces resource underutilization 

– Improves cost-efficiency by eliminating waste 

 Remote access introduces overheads
– Additional interconnect latencies

– Network/protocol processing affect both storage and compute nodes

 HDD disaggregation is common in datacenters
– HDD are so slow that these overheads are negligible

Storage Disaggregation
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 NVMe disaggregation is more challenging
– ~90μs latency  network/protocol latencies are more pronounced

– ~1MIOPS  protocol overheads tax the CPU and degrade performance  

 Flash disaggregation via iSCSI is difficult:
– iSCSI “introduces 20% throughput drop at the application level”*

– Even then, it can still be a cost-efficiency win 

 We show that these overheads go away with NVMe-oF

Storage Flash Disaggregation

*A. Klimovic,  C. Kozyrakis, E. Thereska,  B. John, and S. Kumar, “Flash storage disaggregation,” EuroSys’16
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 Recent extension of the NVMe standard
– Enables access to remote NVMe devices over different network fabrics

 Maintains the current NVMe architecture, and:
– Adds support for message-based NVMe operations 

 Advantages:
– Parallelism: extends the multiple queue-paired design of NVMe

– Efficiency: eliminates protocol translations along the I/O path 

– Performance

 Supported fabrics: 
– RDMA – InfiniBand, iWarp, RoCE

– Fiber Channel, FCoE

NVMe-oF: NVMe-over-Fabrics
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 Three configurations:
1. Baseline: Local, (direct-attached) 
2. Remote storage with NVMe-oF over RoCEv2
3. Remote storage with iSCSI

• Followed best-known-methods for tuning

 Hardware setup:
– 3 host servers (a.k.a. compute nodes, or datastore servers)

• Dual-socket Xeon E5-2699

– 1 target server (a.k.a. storage server)
• Quad-socket Xeon E7-8890

– 3x Samsung PM1725 NVMe-SSDs
• Random: 750/120 KIOPS read/write
• Sequential: 3000/2000 MB/sec read/write 

– Network:
• ConnectX-4 100Gb Ethernet NICs with RoCE support
• 100Gb top-of-rack switch 

Methodology

Baseline: direct-attached (DAS)

Remote storage setup
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 NVMe-oF throughput is the same as DAS
– iSCSI cannot keep up for high IOPS rates 

Maximum Throughput
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 NVMe-oF CPU processing overheads are minimal
– iSCSI adds significant load on the host (30%)

• Even when performance is on par with DAS

Host CPU Overheads
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 CPU processing on target is limited 
– 90% of DAS read-only throughput with 1/12th of the cores

 Cost efficiency win: fewer cores per NVMe-SSD in the server
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 NVMe-oF latencies are the same as DAS for all practical loads
– Both average and tail 

 iSCSI:
– Saturates sooner

– 10x slower even 
under light loads 

Latency Under Load
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 NVMe-oF latencies are the same as DAS for all practical loads
– Both average and tail 

 iSCSI:
– Saturates sooner

– 10x slower even 
under light loads 
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 Evaluated using RocksDB, driven with db_bench
– 3 hosts

– 3 rocksdb instances per host

– 800B and 10KB objects

– 80/20 read-write mix

KV-Store Disaggregation (1/3)
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Disk Bandwidth over Time on the Target

 NVMe-oF performance on-par with DAS
– 2% throughput difference 

• vs. 40% performance degradation for iSCSI

KV-Store Disaggregation (2/3)
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 NVMe-oF performance on-par with DAS
– 2% throughput difference 

• vs. 40% performance degradation for iSCSI

– Average latency increase by 11%, tail latency increase by 2%

• Average Latency: 507μs  568μs

• 99th percentile:    3.6ms  3.7ms

– 10% CPU utilization overhead 
on host

KV-Store Disaggregation (3/3)
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 NVMe-oF reduces remote storage overheads to a bare minimum
– Negligible throughput difference, similar latency

– Low processing overheads on both host and target  

• Applications (host) gets the same performance 

• Storage server (target) can support more drives with fewer cores 

 NVMe-oF makes disaggregation more viable 
– No need to offset iSCSI >>20% performance lose 

Summary

Thank You!
zvika.guz@samsung.com
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Backup
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 NVMe-oF adds 11.7μs over DAS access latency 
– Close to the 10μs spec target

Unloaded Latency Breakdown
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 Storage Performance Development Kit (SPDK)
– Provides user-mode storage drivers

• NVMe, NVMe-oF target, and NVMe-oF host

– Better performance through:
• Eliminating kernel context switches
• Polling rather than interrupts

 Will improve NVMe-oF performance 
– BUT,  was not stable enough for our setup

 For unloaded latency:
– SPDK target further reduces 

latency overhead 
– SPDK local  SPDK target similar to 

local  NVMe-oF

FAQ #1: SPDK 
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 Hyper-convergence Infrastructure (HCI)
– Software-defined approach

– Bundles commodity servers into a clustered pool

– Abstract underlining hardware into a virtualized computing platform 

 We focus on web-scale data centers
– Disaggregation fits well within their deployment model 

• Several classes of server, some of which are storage-centric 

• Already disaggregate HDD

 NVMe-oF, HCI, and disaggregation are not mutually exclusive
– HCI on-top of NVMe-oF

– Hybrid architectures

FAQ #2: Hyper-convergence vs. Disaggregation


