SAMSUNG

NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead Flash Disaggregation

Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan Memory Solution Lab Samsung Semiconductor Inc.

Synopsis

Performance characterization of NVMe-oF in the context of Flash disaggregation

- Overview
 - NVMe and NVMe-over-Fabrics
 - Flash disaggregation
- Performance characterization
 - Stress-testing remote storage
 - Disaggregating RocksDB
- Summary

Non-Volatile Memory Express (NVMe)

- A storage protocol standard on top of PCIe:
 - Standardize access to local non-volatile memory over PCIe
- The predominant protocol for PCIe-based SSD devices Processor 0
 - NVMe-SSDs connect through PCIe and support the standard
- High-performance through parallelization:
 - Large number of deep submission/completion queues
- NVMe-SSDs deliver lots of IOPS/BW
 - 1MIOPS, 6GB/s from a single device
 - 5x more than SAS-SSD, 20x more than SATA-SSD

Storage Disaggregation

- Separates compute and storage to different nodes
 - Storage is accessed over a network rather than locally
- Enables independent resource scaling
 - Allow flexible infrastructure tuning to dynamic loads
 - Reduces resource underutilization
 - Improves cost-efficiency by eliminating waste
- Remote access introduces overheads
 - Additional interconnect latencies
 - Network/protocol processing affect both storage and compute nodes
- HDD disaggregation is common in datacenters
 - HDD are so slow that these overheads are negligible

Storage Flash Disaggregation

- NVMe disaggregation is more challenging
 - ~90µs latency \rightarrow network/protocol latencies are more pronounced
 - ~1MIOPS \rightarrow protocol overheads tax the CPU and degrade performance
- Flash disaggregation via iSCSI is difficult:
 - iSCSI "introduces 20% throughput drop at the application level"*
 - Even then, it can still be a cost-efficiency win
- We show that these overheads go away with NVMe-oF

*A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, "Flash storage disaggregation," EuroSys'16

NVMe-oF: NVMe-over-Fabrics

- Recent extension of the NVMe standard
 - Enables access to remote NVMe devices over different network fabrics
- Maintains the current NVMe architecture, and:
 - Adds support for message-based NVMe operations
- Advantages:
 - Parallelism: extends the multiple queue-paired design of NVMe
 - Efficiency: eliminates protocol translations along the I/O path
 - Performance
- Supported fabrics:
 - RDMA InfiniBand, iWarp, RoCE
 - Fiber Channel, FCoE

Methodology

- Three configurations:
 - 1. Baseline: Local, (direct-attached)
 - 2. Remote storage with NVMe-oF over RoCEv2
 - 3. Remote storage with iSCSI
 - Followed best-known-methods for tuning
- Hardware setup:
 - 3 host servers (a.k.a. compute nodes, or datastore servers)
 - Dual-socket Xeon E5-2699
 - 1 target server (a.k.a. storage server)
 - Quad-socket Xeon E7-8890
 - 3x Samsung PM1725 NVMe-SSDs
 - Random: 750/120 KIOPS read/write
 - Sequential: 3000/2000 MB/sec read/write
 - Network:
 - ConnectX-4 100Gb Ethernet NICs with RoCE support
 - 100Gb top-of-rack switch

Baseline: direct-attached (DAS)

Remote storage setup

Maximum Throughput

- NVMe-oF throughput is the same as DAS
 - iSCSI cannot keep up for high IOPS rates

Read/Write Instruction Mix

Host CPU Overheads

- NVMe-oF CPU processing overheads are minimal
 - iSCSI adds significant load on the host (30%)
 - Even when performance is on par with DAS

Storage Server CPU Overheads

- CPU processing on target is limited
 - 90% of DAS read-only throughput with 1/12th of the cores
- Cost efficiency win: fewer cores per NVMe-SSD in the server

Latency Under Load

- NVMe-oF latencies are the same as DAS for all practical loads
 - Both average and tail
- iSCSI:
 - Saturates sooner
 - 10x slower even under light loads

Latency Under Load

- NVMe-oF latencies are the same as DAS for all practical loads
 - Both average and tail
- iSCSI:
 - Saturates sooner
 - 10x slower even under light loads

KV-Store Disaggregation (1/3)

- Evaluated using RocksDB, driven with db_bench
 - 3 hosts
 - 3 rocksdb instances per host
 - 800B and 10KB objects
 - 80/20 read-write mix

KV-Store Disaggregation (2/3)

- NVMe-oF performance on-par with DAS
 - 2% throughput difference
 - vs. 40% performance degradation for iSCSI

KV-Store Disaggregation (3/3)

- NVMe-oF performance on-par with DAS
 - 2% throughput difference
 - vs. 40% performance degradation for iSCSI
 - Average latency increase by 11%, tail latency increase by 2%
 - Average Latency: $507\mu s \leftrightarrow 568\mu s$
 - 99th percentile: 3.6ms $\leftarrow \rightarrow$ 3.7ms
 - 10% CPU utilization overhead on host

Summary

- NVMe-oF reduces remote storage overheads to a bare minimum
 - Negligible throughput difference, similar latency
 - Low processing overheads on both host and target
 - Applications (*host*) gets the same performance
 - Storage server (target) can support more drives with fewer cores
- NVMe-oF makes disaggregation more viable
 - No need to offset iSCSI >>20% performance lose

Thank You!

zvika.guz@samsung.com

Unloaded Latency Breakdown

- NVMe-oF adds 11.7µs over DAS access latency
 - Close to the 10µs spec target

FAQ #1: SPDK

- Storage Performance Development Kit (SPDK)
 - Provides user-mode storage drivers
 - NVMe, NVMe-oF target, and NVMe-oF host
 - Better performance through:
 - Eliminating kernel context switches
 - Polling rather than interrupts
- Will improve NVMe-oF performance
 - **BUT**, was not stable enough for our setup
- For unloaded latency:
 - SPDK target further reduces latency overhead
 - − SPDK local \leftarrow → SPDK target similar to local \leftarrow → NVMe-oF

Unloaded Latency

FAQ #1: SPDK

20

- Storage Performance Development Kit (SPDK)
 - Provides user-mode storage drivers
 - NVMe, NVMe-oF target, and NVMe-oF host
 - Better performance through:
 - Eliminating kernel context switches
 - Polling rather than interrupts
- Will improve NVMe-oF performance
 - **BUT**, was not stable enough for our setup
- For unloaded latency:
 - SPDK target further reduces latency overhead
 - − SPDK local \leftarrow → SPDK target similar to local \leftarrow → NVMe-oF

Unloaded Latency

FAQ #2: Hyper-convergence vs. Disaggregation

- Hyper-convergence Infrastructure (HCI)
 - Software-defined approach
 - Bundles commodity servers into a clustered pool
 - Abstract underlining hardware into a virtualized computing platform
- We focus on web-scale data centers
 - Disaggregation fits well within their deployment model
 - Several classes of server, some of which are storage-centric
 - Already disaggregate HDD
- NVMe-oF, HCI, and disaggregation are not mutually exclusive
 - HCI on-top of NVMe-oF
 - Hybrid architectures

