NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead Flash Disaggregation

Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan
Memory Solution Lab
Samsung Semiconductor Inc.
Performance characterization of NVMe-oF in the context of Flash disaggregation

- **Overview**
 - NVMe and NVMe-over-Fabrics
 - Flash disaggregation

- **Performance characterization**
 - Stress-testing remote storage
 - Disaggregating RocksDB

- **Summary**
Non-Volatile Memory Express (NVMe)

- A storage protocol standard on top of PCIe:
 - Standardize access to local non-volatile memory over PCIe
- The predominant protocol for PCIe-based SSD devices
 - NVMe-SSDs connect through PCIe and support the standard
- High-performance through parallelization:
 - Large number of deep submission/completion queues
- NVMe-SSDs deliver lots of IOPS/BW
 - 1MIOPS, 6GB/s from a single device
 - 5x more than SAS-SSD, 20x more than SATA-SSD
Storage Disaggregation

- Separates compute and storage to different nodes
 - Storage is accessed over a network rather than locally
- Enables independent resource scaling
 - Allow flexible infrastructure tuning to dynamic loads
 - Reduces resource underutilization
 - Improves cost-efficiency by eliminating waste
- Remote access introduces overheads
 - Additional interconnect latencies
 - Network/protocol processing affect both storage and compute nodes
- HDD disaggregation is common in datacenters
 - HDD are so slow that these overheads are negligible
NVMe disaggregation is more challenging
- ~90μs latency → network/protocol latencies are more pronounced
- ~1MIOPS → protocol overheads tax the CPU and degrade performance

Flash disaggregation via iSCSI is difficult:
- iSCSI “introduces 20% throughput drop at the application level”*
- Even then, it can still be a cost-efficiency win

We show that these overheads go away with NVMe-oF

Recent extension of the NVMe standard
 – Enables access to remote NVMe devices over different network fabrics

Maintains the current NVMe architecture, and:
 – Adds support for message-based NVMe operations

Advantages:
 – Parallelism: extends the multiple queue-paired design of NVMe
 – Efficiency: eliminates protocol translations along the I/O path
 – Performance

Supported fabrics:
 – RDMA – InfiniBand, iWarp, RoCE
 – Fiber Channel, FCoE
Methodology

- Three configurations:
 1. Baseline: **Local**, (direct-attached)
 2. Remote storage with **NVMe-oF** over RoCEv2
 3. Remote storage with **iSCSI**
 - Followed best-known-methods for tuning

- Hardware setup:
 - 3 **host servers** (a.k.a. **compute nodes, or datastore servers**)
 - Dual-socket Xeon E5-2699
 - 1 **target server** (a.k.a. **storage server**)
 - Quad-socket Xeon E7-8890
 - 3x Samsung PM1725 NVMe-SSDs
 - Random: 750/120 KIOPS read/write
 - Sequential: 3000/2000 MB/sec read/write
 - Network:
 - ConnectX-4 100Gb Ethernet NICs with RoCE support
 - 100Gb top-of-rack switch
- NVMe-oF throughput is the same as DAS
 - iSCSI cannot keep up for high IOPS rates
NVMe-oF CPU processing overheads are minimal
 – iSCSI adds significant load on the host (30%)
 • Even when performance is on par with DAS
Storage Server CPU Overheads

- CPU processing on target is limited
 - 90% of DAS read-only throughput with $1/12$th of the cores
- Cost efficiency win: fewer cores per NVMe-SSD in the server
NVMe-oF latencies are the same as DAS for all practical loads
- Both average and tail

iSCSI:
- Saturates sooner
- 10x slower even under light loads
- NVMe-oF latencies are the same as DAS for all practical loads
 - Both average and tail

- iSCSI:
 - Saturates sooner
 - 10x slower even under light loads
Evaluated using RocksDB, driven with db_bench

- 3 hosts
- 3 rocksdb instances per host
- 800B and 10KB objects
- 80/20 read-write mix
NVMe-oF performance on-par with DAS
- 2% throughput difference
 - vs. 40% performance degradation for iSCSI
NVMe-oF performance on-par with DAS

- 2% throughput difference
 - vs. 40% performance degradation for iSCSI
- Average latency increase by 11%, tail latency increase by 2%
 - Average Latency: 507μs \leftrightarrow 568μs
 - 99th percentile: 3.6ms \leftrightarrow 3.7ms
- 10% CPU utilization overhead on host

![Read Latency CDF](image)
NVMe-oF reduces remote storage overheads to a bare minimum
- Negligible throughput difference, similar latency
- Low processing overheads on both host and target
 - Applications (host) gets the same performance
 - Storage server (target) can support more drives with fewer cores

NVMe-oF makes disaggregation more viable
- No need to offset iSCSI >>20% performance lose

Thank You!

zvika.guz@samsung.com
Unloaded Latency Breakdown

- NVMe-oF adds 11.7μs over DAS access latency
 - Close to the 10μs spec target

4K Unloaded Read Latency

- NVMe DAS Path: 81.6μs
- Others: 1.52μs
- NVMf Target Modules: 4.57μs
- NVMf Host Modules: 3.25μs
- Fabric: 2.43μs
FAQ #1: SPDK

- Storage Performance Development Kit (SPDK)
 - Provides user-mode storage drivers
 - NVMe, NVMe-oF target, and NVMe-oF host
 - Better performance through:
 - Eliminating kernel context switches
 - Polling rather than interrupts

- Will improve NVMe-oF performance
 - BUT, was not stable enough for our setup

- For unloaded latency:
 - SPDK target further reduces latency overhead
 - SPDK local \(\leftrightarrow\) SPDK target similar to local \(\leftrightarrow\) NVMe-oF
- Storage Performance Development Kit (SPDK)
 - Provides user-mode storage drivers
 • NVMe, NVMe-oF target, and NVMe-oF host
 - Better performance through:
 • Eliminating kernel context switches
 • Polling rather than interrupts
- Will improve NVMe-oF performance
 - **BUT,** was not stable enough for our setup
- For unloaded latency:
 - SPDK target further reduces latency overhead
 - SPDK local \leftrightarrow SPDK target similar to local \leftrightarrow NVMe-oF
FAQ #2: Hyper-convergence vs. Disaggregation

- Hyper-convergence Infrastructure (HCI)
 - Software-defined approach
 - Bundles commodity servers into a clustered pool
 - Abstract underlining hardware into a virtualized computing platform

- We focus on web-scale data centers
 - Disaggregation fits well within their deployment model
 - Several classes of server, some of which are storage-centric
 - Already disaggregate HDD

- NVMe-oF, HCI, and disaggregation are not mutually exclusive
 - HCI on-top of NVMe-oF
 - Hybrid architectures