

Relieving Self-Healing SSDs of Heal Storms

Li-Pin Chang, Sheng-Min Huang, Kun-Lin Chou Speaker : Sheng-Min Huang

> Embedded Software and Storage Lab National Chiao-Tung University, Taiwan

Outline

- Introduction
- Heal Storm
- Virtual Wear Leveling
- Experiment Results
- Conclusion

Flash Wear Out Dynamics

• Charge may trap in tunnel oxide after PE cycles.

• The threshold voltage shift will become intolerably large and create erroneous bit values.

Flash Healing

- Trapped charge (stress) dissipate slowly over time.
 - Accelerate this process under high temperature.
- Healing : Heated-Accelerated Self Recovery [2, 3]
 - Word line heaters to create high temp.
 - Block heal operation for system software
 - Heal nearly worn-out blocks
 - Time cost is about **one second** [3, 4]
 - Relieve about 80% stress [5]

Heal Storms

- Wear Leveling (WL)
 - Strive to balance the erase count of all blocks
- Self-healing flash memory heals flash blocks when blocks reach their PE cycle limit.
- Heal storm, blocks undergo block-healing within a short period of time.

- Read Response degradation
- Write throughput fluctuation
- Unpredictable reliability

Virtual Wear Leveling

- Leverage the effect of erase count balancing from WL
- Virtual erase count
 - $vec_i = eci + \delta_i$
 - Operate conventional WL on vec

Virtual Wear Leveling in Action

Progressive Delta Leveling

- In the rest of the SSD lifetime,
 - the difference among erase counts remains unchanged.
 ⇒ Lots of blocks have unused PE cycles.
 - all blocks have the same δ (i.e. the difference = 0)
 - Increase δ_i with different rate
 - Update δ_i only after block healing

Experiment Setup

• Flash memory parameters

- 16 flash chips
- 16 KB per page
- 4MB per block
- Latency
 - 0.5 ms for page read
 - 1.6 ms for page write
 - 2.9 ms for block erase
 - 1024 ms for block heal

Workload	Disk	Total	Total	Avg re	eq. size	Scale
	vol. size	write	read	write	read	factor
HM0	39	92	49	37.8	36.3	1/1650
RSRCH0	277	46	5	37.7	38.9	1/4000
STG0	113	62	15	38.1	52.8	1/2700
STG1	113	27	117	36	88.3	1/1900
WDEV0	136	31	9	35.8	40.7	1/5200
EX9	400	220	52	47.1	92.2	1/180
MSN	169	96	321	33.6	35	1/20
	GB	GB	GB	KB	KB	

Table 1: Experimental workloads and their characteristics.

Name	Mapping	Wear Leveling	Virtual
	scheme	algorithm	wear leveling
LWL	Page mapping	Lazy Wear Leveling	No
vLWL	Page mapping	Lazy Wear Leveling	Yes
HL	Page mapping	Heal Leveling	No
DH	Page mapping	Dheating	No

Table 2: Flash management methods involved in ourexperiments.

ESA NA 1895

I/O Performance

- LWL suffered transient variation by heal storms.
- DH had low write throughput because of high garbage collection overhead.

Reliability

- The % of blocks with a high bit error rate (BER) [6] should not fluctuate over time.
- Increasing gradually was good for system software to predict the SSD retirement.

Lifespan

• Our method did not affect the SSD lifespan

Erase count distribution

• Many PE cycles in blocks were wasted in HL.

Experimental Result Summary

- Conventional Wear leveling
 - Suffered heal storms that flash memory were occupied by block-healing operations.
- Dheating
 - Extremely high write amplification because of inaccurate hot/cold identification and local garbage collection in pools.
- Heal Leveling
 - Unexpected short device lifespan because of large variation in erase counts.

Conclusion

- Software-controlled block healing radically extends the SSD lifespan.
- Heal storm damages predictability of performance and reliability.
- Virtual wear leveling leverages conventional wear leveling to disperses block healing over time.
- Possible application of virtual wear leveling
 - Software-controlled bit density [7]
 - Erasing in MLC mode: vec+=2.2
 - Erasing in SLC mode: vec+=1

Thank you Q & A

Reference

- [1] K. Votto. Samsung SSD 840: Testing the endurance of TLC NAND, 2012.
- [2] Y.-T. Chiu. Forever flash. Spectrum, IEEE, 49(12):11–12, 2012.
- [3] H.-T. Lue, P.-Y. Du, C.-P. Chen, W.-C. Chen, C.-C. Hsieh, Y.-H. Hsiao, Y.-H. Shih, and C.-Y. Lu. Radically extending the cycling endurance of flash memory (to> 100m cycles) by using built-in thermal annealing to self-heal the stress-induced damage. In Electron Devices Meeting (IEDM), 2012 IEEE International, pages 9.1.1–9.1.4, 2012.
- [4] Y.-M. Chang, Y.-H. Chang, J.-J. Chen, T.-W. Kuo, H.-P. Li, and H.-T. Lue. On trading wear-leveling with heal-leveling. In Proceedings of the 51st Annual Design Automation Conference, DAC '14, 2014.
- [5] Q. Wu, G. Dong, and T. Zhang. Exploiting heat-accelerated flash memory wearout recovery to enable self-healing SSDs. In USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage), 2011.
- [6] L. Shi, K. Qiu, M. Zhao, and C. J. Xue. Error model guided joint performance and endurance optimization for flash memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(3):343–355, March 2014.
- [7] X. Jimenez, D. Novo, and P. Ienne. Software controlled cell bit-density to improve NAND flash lifetime. In Proceedings of the 49th Annual Design Automation Conference, DAC '12, pages 229–234, New York, NY, USA, 2012. ACM.