
PM aware storage engine for MongoDB
Moshik Hershcovitch

IBM Research
moshikh@il.ibm.com

Revital Eres
IBM Research

eres@il.ibm.com

Adam McPadden
IBM Systems

mcpaddea@us.ibm.com

ABSTRACT
With the maturity of Persistant Memories (PM) such as
storage class memory technologies, e.g., STT-MRAM, PCM,
ReRAM and 3DXpoint, we expect to see practical imple-
mentation of data structures, data stores and databases for
use-cases such as IoT, mobile, and cloud. We developed a
PM-aware storage engine for MongoDB which leverages PM
hardware capabilities such as byte addressability and persis-
tency. With our storage engine we see improved latency, less
write amplification, less capacity and simpler implementa-
tion due to the fact that some code paths become unnecessary
compared to past implementations.

KEYWORDS
Storage Class Memory, Database Architecture, Storage En-
gine

Introduction.MongoDB is the most popular NoSQL data-
base, and the fifth most popular among all databases [2]. It
stores JSON documents and the write operations are atomic
for single document [1]. The component in mongoDB which
is responsible for managing the data storage in a single node
is the storage engine. The default commercial optimized stor-
age engine in MongoDB is called WiredTiger (WT).

For our work we assumed that the data reside entriely in
persistant memory without the need for additional storage
devices. Moreover, we assume that the latency to the PM
device is somewhat slower than the latency of DRAM but
on the same order of magnitude.
The key idea behind our innovative design relies on the

fact that PMhardware features enable us to adopt and explore
new ways to ensure the persistency and the consistency of
the database without using journaling and checkpointing,
which are the traditionally techniques used in databases.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211912

Design.Our PM aware storage engine uses a log structure
architecture to store the document content, with groups of
documents called segments that reside on PM, similar meth-
ods were used by RAMCloud [3]. During document insert we
append the entire document to the end of the log. Then we
update the index in DRAM to point to its persistent location
in the PM. We achieve document level atomicity by adding
CRC to the document, which allows us to identify consistent
documents by validating the CRC following a crash, and
deleting inconsistent documents which have invalid CRC. In
this way we can avoid journaling and checkpointing, and
still have a consistent view of the database.
Our PM aware storage engine supports regular storage

engine commands (such as search, insert, delete, and up-
date) and recover to a stable state after a crash. It leverages
a garbage collection mechanism to compact segments and
supports collection level concurrency control. For better per-
formance we use direct access (DAX) mode (direct access to
the PM, without DRAM copy) to access PM.

Benchmarks. Our PM aware storage engine is emulated
on PM flexible prototyping platform named ConTutto which
enables new memory technologies for IBM POWER servers.
ConTutto is connected to NVDIMM-N as the PM device.
The performance evaluation of single-threaded YCSB

benchmark shows that (1) WT is running x2 faster with
PM as the storage device than running with SSD as the stor-
age device; (2) MongoDB with Our PM aware storage engine
is running up to 40% faster than MongoDB with WT running
on PM (depends on the DRAM/PM ratio).

In addition to the performance improvement, we also gain
better endurance (lower write amplification), better capacity
and lower code paths in our PM aware storage engine since
journaling and checkpointing are unnecessary.

Acknowledgments. The work described in the poster in-
cluded collaboration with Ronen Kat, Joel Nider, Hillel Kolod-
ner, Michael Factor, Oliver OHalloran from IBM.

REFERENCES
[1] 2018. Atomicity and Transactions. MongoDB, Inc. https://docs.

mongodb.com/manual/core/write-operations-atomicity/
[2] 2018. DB-Engines Ranking. DB-Engines. https://db-engines.com/en/

ranking
[3] Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout. 2014.

Log-structured memory for DRAM-based storage. In Proceedings of
the 12th USENIX conference on File and Storage Technologies, FAST 2014,
Santa Clara, CA, USA, February 17-20, 2014. 1–16.

123

https://doi.org/10.1145/3211890.3211912
https://docs.mongodb.com/manual/core/write-operations-atomicity/
https://docs.mongodb.com/manual/core/write-operations-atomicity/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking

	Abstract
	References

