Protecting Single Shingled Write Drives Against
Latent Sector Failures

Thomas Schwarz, SJ
Marquette University
Milwaukee, WI, USA

Thomas.Schwarz @Marquette.edu

ABSTRACT

The recently introduced shingled write technology is neces-
sary for reaching drive capacities of 10 TB, but no longer
allows blocks to be updated in place. This inconvenience how-
ever simplifies the use of intra-disk redundancy to protect
disks against latent sector failures, necessary when the disk
drive does not form part of a larger ensemble. Latent disk
sector errors usually befall single disk blocks and are only
discovered when repeated attempts to read the block have
failed. It is known that they afflict a sizable portion of modern
disks. Because of the nature of shingled writing, content is
written to disks in large contiguous bands. Redundant infor-
mation can be calculated over large segments of each band
and embedded as parity blocks into the segment. We investi-
gate strategies for generating redundant information, evaluate
various codes using distributions of latent sector locations
obtained by Schroeder and colleagues, and propose a simple
pyramid code that combines easy creation and easy recovery
of unreadable blocks with low storage overhead and good
protection.

CCS CONCEPTS

* Computer systems organization — Reliability;

KEYWORDS

Intra-disk redundancy scheme, shingled-write disks

1 INTRODUCTION

Shingled Write Technology (SWT) [1, 8, 21, 24] became
necessary to maintain the pace of data density increases in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SYSTOR 18, June 4-7, 2018, HAIFA, Israel

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5849-1/18/06. .. $15.00
https://doi.org/10.1145/3211890.3211893

26

magnetic disks. A shingled write head uses a stronger, but
asymmetric magnetic field. A stronger field allows the bit
density in a track to be increased. Due to the asymmetry,
shingled writing can overlap the currently written track with
the previous track and leave only a small part of the previous
track untouched. This results in higher track density. The
large increase in data density comes at the cost of no longer
allowing in-place updates, since a write now destroys data in
between 4 and 8 adjacent tracks in one direction. Disks with
shingled write technology organize data in bands separated
by unused tracks and only appends data to a band.

As disks sizes have increased, consumers, disk producers,
and storage researchers have taken note of the existence of
latent disk errors [6, 7, 10, 11, 20, 23]. A latent disk error is
only discovered when we try to read an affected disk block.
Their exact cause still remains unclear, but thanks to the work
by Bairavasundaram, Goodson, Pasupathy, and Schindler [3]
and by Schroeder, Damouras, and Gill [19] much more is
now known. These researchers gained access to failure data
of about 1.53 million disks from NetApp. In this set, 3.45%
of all disks developed latent disk errors during a period of 32
months.

In installations with several or many disks, inter-disk re-
dundancy such as provided by RAID Level 6 protects against
complete drive failure as well as latent disk errors. Scrubbing
[2, 15, 20] periodically reads all sectors in a disk and thereby
detects latent sector failures, whose data then can be recov-
ered. A variant of scrubbing verifies all data immediately after
a write [18, 22], at least if the disk is not busy. Since the data
to be written is still in buffer, an unreadable block has caused
no harm. For isolated disks, intra-disk redundancy, introduced
by Dholakia and colleagues [6, 7, 10], is the only option to
protect against latent sector errors.

The work by Schroeder and colleagues has yielded some
insights into the distribution of latent sector errors on disk
[19]. The vast majority of latent sector errors affect a single
block, but large bursts also occur. The distribution of inter-
burst distance and burst length is best approximated by a
Pareto distribution. This is unfortunate news for the designer
of the erasure correcting code, since the Pareto distribution
is tail-heavy. Long bursts that exceeds the erasure-correcting
capability of a chosen code are more probable.


https://doi.org/10.1145/3211890.3211893

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel Thomas Schwarz, SJ

d
d(l] (70,0'%6970,1'd1@~~-@70,20'd20) (po)
G- : = o do®m1-di®...Om20-do | =| p
: 72,0 do @ V2,1 d1 D ... D y2,20 - d2o P2
dao
Figure 1: Construction of a Linear MDS Code.

In the remainder of this contribution, we investigate a few code with p parity is defined by an n X p generator matrix
promising intra-disk codes for their capacity to correct la- G. To qualify as a generator matrix, all n x n submatrices of
tent sector failures. Because shingled write disks cannot up- the matrix (I,|G) obtained by concatenating an n x n identity
date single disk blocks, maintaining intra-disk parity is less matrix with G need to be invertible. Suitable generator ma-
challenging and code design simpler. We then investigate trices exists in abundance as long as the segment size n+ p
the candidate codes using the parameters of the burst-length does not exceed 2/, the number of Galois field elements. Us-
and burst distance distributions obtained by Schroeder and ing matrix inversion, any n of the n + p parity blocks suffice
colleagues [19]. We use these parameters to extrapolate the to reconstruct all n+ p blocks. Codes such as RDP are also
behavior of the much larger shingled disk drives. Presumably, linear MDS codes but are implemented without Galois field
more modern disks are better at controlling for latent sector operations [5].
failures, so that our test set is quite pessimistic. We still claim Formally, the parity blocks are calculated as p =G - d.
that it represents a “reasonably worst” scenario. We are able We create the parity blocks by multiplying all the data in a
to identify a simple pyramid code [9] that only uses parity block with a certain Galois field element and then obtain a
calculated with exclusive-or operations that provides large parity block as the exclusive-or of the results. Plank, Greenan,
erasure correcting capability with low operational costs and and Miller [17] show how this can be done very efficiently
low storage overhead. We also note that the effectiveness of through the judicious use of the PSHUFB instruction (or their
any code depends on the propensity of a drive to exhibit latent equivalents) in newer CPU architectures. We give an example
sector errors and propose to investigate adaptive schemes. for a code with segment size 24 = 21+3 in Figure 1. For such a

small segment size, the matrix coefficients would presumably
2 INTRA-DISK REDUNDANCY CODING be in .%,s and each data symbol d; correspond to 4096 B

Any intra-disk redundancy scheme incurs operational costs interpreted as a column vector of dimension 4096.

and storage overhead. Operational costs are comprised of the
complexity of the parity calculation and the complexity of 2.2 Interleaved Parity Check Codes
data recovery. The storage costs are given by the number of
redundant sectors per coding block. All shingled write disks
maintain their data in bands to which new data is appended.
This simplifies intra-disk redundancy schemes since once
written, data is never overwritten until garbage collection.

Speedy parity calculation and data recovery with a linear
MDS code relies on sophisticated, power-hungry processors.
This makes code using only exclusive-or operations attrac-
tive. The interleaved parity check code has the same capa-
bility as a linear MDS code to deal with a single burst of
unreadable blocks [7]. The code takes a contiguous set of n

2.1 Linear MDS Codes blocks numbered from O to n — 1, calculates the exclusive-or
For the calculation of parity codes, we only consider linear of the blocks with the same reminder modulo p, p <n/2,
codes. The simplest instance of a linear code takes an infor- and writes the result into a parity block, giving rise to p
mation word, n disk blocks, and adds a single parity block, parity blocks. In Figure 2, n = 21 and p = 3. Any error
which is obtained as the bit-wise exclusive-or of the data burst of up to p blocks affects only one block in each stripe
blocks. A linear MDS code is a natural generalization of this Sk ={d;,i=k mod p} U{py} and can therefore be recovered.
simple parity code. We interpret all data as a sequence of Operationally, the interleaved parity check code has advan-
elements in a Galois field(finite field) .%,; where each Galois tages. First and foremost, the basic operation is the exclusive-
field element is a bit string of length /. The contents of a disk or (XOR). Second, when we generate parity, we only need to
block become an element of a vector space over .%, where process a data block once, by XOR-ing it with one of several
each Galois field element is a bit string of length /. For exam- parity blocks kept in the disk’s RAM. In contrast, the linear
ple, a 4KB block can be interpreted as a 4096-dimensional MDS code needs to update all parity blocks with the single
vector over F,s, as a 2048-dimensional vector over Z,is, data block. Third, for recovery, the linear MDS code needs to
or as a 1024-dimensional vector over Zy». A linear MDS invert a submatrix and then multiply this matrix with a vector

27



Protecting Single Shingled Write Drives Against Latent Sector FailuresSYSTOR 18, June 4—7, 2018, HAIFA, Israel

po=do@®d3DdgDdgDdisDdisDdig p1=diBdsBd; DdigDdizDPdig®Ddig p2=do®ds®dg®diy D dig ®dy7 D dog

Figure 2: Construction of an Interleaved Parity Code.

po,o =do @ dy Bdy®ds po,3 =di2 ®di3 ©diy ®dys P1 ="71,0d0 ©71,1d1 © ... D Y1,19d19 D Y1,20d20
Po1 =ds Bds Bds B dy Po,4 = dig B di7 & dis ® dig P2 = Y2,0do © Y2,1d1 © ... B Y2,19d19 D Y2,20d20
Po2 = ds ®dy ® dig ® di Po,s = dao
30T C0 C1 €9 £ £ €3 03 G5 €9 €3 € €3 0 G O EY EA £ G GO EH EH EN EH A A C B Bl &
poo = do®dy®dy&ds po1 = di®ds®dg D dy . b4 = dig @ di7 ® dis B dig Pos = P15 =dx
pro = ModoPvadi By2de Snzds pra = Y,0ds ©y11ds S y1,2ds S y1,3dy pra = 7.0di6 ©Y1,1d17 B v1.2d1s S 71,3d1g P2 = 7Y20do B y21d1 D ... DY220d20
Figure 3: Two constructions of a Pyramid Code.
calculated from the remaining data and parity blocks in the redundancy for the complete large segment. This code is
segment. attractive since the m x k; parity blocks can deal effectively
The erasure correcting capability of a linear MDS code with small bursts of unreadable blocks while still protecting
are of course optimal. One with p parity blocks can recover against larger bursts using the parities of the large segment.
from the unavailability of any p blocks. In contrast, the inter-
leaved parity code can recover from the unavailability of any 2.4 Exclusive-Or Parity Based Pyramid
p contiguous blocks. If there is a burst of p — 1 contiguous, Codes

unreadable blocks and a single unreadable block in a large
segment, then the probability of recovery is approximately
1/p. Similarly, the probability that the code can recover from
[ isolated unreadable block in a large segment is approxi-
mately P,; = (p(p—1)...(p—1+ 1))/p', which is small for
even moderate / and p. For example, for / =2 and p =4,
P,;=0.75,forl =5 and p =10, P,; = 0.302, for / = 10 and
p =20, P,;=0.065, and for / = 20 and p = 40, the probability
is P,; = 0.003. This observation explains the relative poor
showing of this code in our experiments reported below.

The idea of a pyramid code can also be applied to an inter-
leaved parity code. We recall that the interleaved parity code
adds a separate parity block as the exclusive-or of every mih
data block. Several layouts are possible, we investigate the
layout depicted in Figure 4. The layout starts by placing r
contiguous data blocks into a reliability stripe — a small seg-
ment —, to which it adds an exclusive-or parity. A contiguous
set of these small segments (each comprising r+ 1 blocks) are
then a grouped into a large segment, to which an interleaved
parity code adds additional parity blocks.

In comparison to the previously discussed pyramid code,

2.3 Pyramid Codes based on linear MDS calculating parity is simpler. A data block contributes to two
codes parity blocks, namely one because of its membership in the
Finally, we can use a class of codes that are known as Pyramid reliability stripe of m contiguous blocks and one from the
codes [9]. We start with a linear MDS code on a large segment interleaved parity check code. In contrast, writing data blocks
of n data blocks. The code generates k parity blocks as a linear using the pyramid code based on linear MDS codes involves
combination of the data blocks. We divide k into k; + k; = k. ki + ks writes.
We also divide the n data blocks into m about equally-sized Just as before, the small segments can be used to deal with
small segments. We then replace the k; parity blocks with isolated latent sector failures. However, if not used for this
m x k; parity blocks (for a total of k; +m x k; parity blocks) purpose, they can still be sometimes used in order to recover
that are calculated as a linear combination of the blocks in from a burst just larger than the number of parities in the
one of the m small segments. The calculation is the same, but interleaved parity check code.
the data blocks outside of the small segments are set to be
Zero. 3 EXPERIMENTAL SET-UP
Figure 3 gives two examples, where the data blocks are The analysis by Schroeder and colleagues [19] of failure data
subdivided into four groups of four (and one group of one). some ten years ago has shown that the susceptibility for latent
In the top construction, we assume that the first parity of a sector errors is surprisingly high but differs widely among
linear code is just the exclusive-or parity of the data blocks. different disk models and batches. The vast majority of latent
Data recovery with a pyramid code starts with using small sector errors (always > 90%) affect single blocks, but very
segments and then progressing to the use of the available long bursts also happen. Both the length of error bursts and

28



SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Thomas Schwarz, SJ

|1|2|3|4|5|e|p1|7|sI9|1o|11|12Ip2|13|14|15|1e|17|18|p3I19|2o|21|22I23|24|p4|q1‘q2|q3|q4|
pr = di®©da®d3®dsDdsDds Py = dig D doo D da1 D daz ® daz D doy
p2 = dr®dg®dyg®dioDdi @ di2 @1 = di®dsDdg®dia®dis D p3 D da
p3s = di3®dig Ddis D dig ® di7 © dis G2 = da®dg®dg®dia®pa®die® das
g3 = d3®p1 DdioDdiz®dir ®dao D dag
g = da®d; B di1 Ddiga D disDda Dpy

Figure 4: A Pyramid Code with Exclusive-Or Parity.

Table 1: Parameters from distribution fitting for latent failure sectors (Table I, [19]).

Parameter A-1 D-2 E-1 E-2 k-2 k-3 n-3 o0-2
Single burst probability 09 098 098 096 0.97 097 093 097
Burst Length Pareto-o 121 1.79 135 1.17 1.2 1.15 125 144
Distance Pareto-o 0.008 0.022 0.158 0.128 0.017 0.00045 0.077 0.05

Table 2: Percentage of disks with a latent sector error for
our extrapolated families

Type % of Disks ‘ Type % of Disks

A-1 16.26 k-2 31.41
D-2 38.61 k-3 0.993
E-2 96.99 n-3 81.88
E-3 94.15 0-2 10.50

the distance between affected bursts are Pareto distributed.
This is bad news for the protection against latent disk failures,
since it means that longer bursts are more common then one
would assume.

Luckily, the probability that a given disk sector suffers an
error is very low. In fact, this makes analysis of the phenom-
enon very difficult. In particular, according to the results of
Schroeder and colleagues [19] latent sector errors defy any
simple explanation. For instance, one would expect a strong
correlation between utilization and prevalence of latent sector
errors, but this is just not the case.

Modeling under this type of uncertainty and a dearth of
publicly available traces is by necessity speculative. In our
experiments we therefore use the parameters from the distri-
bution fitting by Schroeder and colleagues [19] for various
disk types and apply them to families of theoretical shingled
write disk models with much higher capacity, namely 8TB
organized in sectors of 4KB. This extrapolation therefore no
longer describes actual families of disks. Shingled write disks
have a much larger bit density in a track and a much larger
track density. Also, the actual disks have a sector size of 512B.
It is unclear how changing the parameters will affect the fre-
quency of latent sector errors. Since writes are the culprit
for generating these errors, we can assume that changing the
block size has no great effect. If disk drive geometry is a factor
[19], then our methodology overestimates the frequency.

29

Our extrapolation shows the variety in disk behavior that
we would expect. We are probably erring on the side of cau-
tion; actual disks should show a lower rate of latent sector
incidences. The parameters for our hypothetical large disks
are the same as for the families of disks investigated previ-
ously [19] and are presented in Table 1. The percentage of
disks with a latent sector error for these hypothetical disks
are given in Table 2.

We used extensive simulation (amounting to years of CPU
time) in order to obtain the percentage of disks with uncor-
rectable latent sector errors after assuming various intra-disk
redundancy schemes.

4 RESULTS

Our results show that all types of intra-disk redundancy are
successful in reducing the proportion of disks with latent
sector failures. No scheme with reasonable parity overhead
can correct all latent sector errors with high confidence. This
is a function of the relatively high likelihood of very long
bursts. The best protection scheme for a given disk family
depends primarily on the susceptibility of the disk family for
latent sector errors.

We present the results in terms of a contour graph. The
lines connect points with parameters as coordinates that give
rise to the same probability that a disk drive contains one or
more unrecoverable latent sector failures. These probabilities
are given in percentages. The colors correspond to points
representing parameters with approximately the same data
loss probability due to latent sector failures and change color
from blue through orange to beige as the probability increases.

4.1 Interleaved Parity Code versus linear
MSD code
We first compared the protection offered by the interleaved

parity code to that of the linear MDS code. Figures 5 to 12
give our results. We used segment sizes between 100 and



Protecting Single Shingled Write Drives Against Latent Sector FailuresSYSTOR 18, June 4—7, 2018, HAIFA, Israel

Segment Size

5 10 15 20 25 30

Number of Parities

Figure 5: Comparison of the Interleaved Parity Code against a linear MDS code for A-1. Left: linear MDS, Middle:
Interleaved Parity, Right: Comparison.

Segment Size

Segment Size

Segment Size

30000 s

¢

25000

15000 |

Segment Size

10000 |

n n oo
20 25 30

Number of Parities

30000

25000

15000+

10000+

5000

n n TR r—r— . il
5 10 15 20 25 30
Number of Parities

Segment Size

5000

n n orum n n i n n
5 10 15 20 25 30 5 10

Number of Parities

156
Number of Parities

15 20 25 30

Number of Parities

20 25 30 5 10

Figure 6: Comparison of the Interleaved Parity Code against a linear MDS code for D-2.

30000

25000

70 20000+

15000+

Segment Size
g
Segment Size

30 10000+

5000

30000

3
Segment Size

25 30 5 10

20
Number of Parities

Figure 7: Comparison of the Interleaved Parity Code against a linear MDS code for E-1.

10 15

30,000 blocks and varied the total number of parity per seg-
ment between 1 and 30. At the left of each Figure, we give
the results for the linear MDS code, in the middle for the
Interleaved Parity Code, and on the right the ratio of dataloss
probability of Interleaved over MDS. This ratio is always at
least one, since MDS codes have optimal recovery capabilities
for a given storage overhead.
We make several observations:

(1) For most disk families, the contour lines run almost in
parallel to the y-axis, at least for the MDS code. In this case,
then dataloss probability of the whole disk depends little on

15
Number of Parities

30

25

20
Number of Parities

20 25 30 5 10 15

the segment size and almost completely on the number of
parities. With other words, for a given storage overhead, one
should then choose the largest segment size compatible with
operational restrictions. One should prefer to add parities to
complete bands instead of breaking the bands into smaller seg-
ments. The highly susceptible disk families E-1, E-2, and n-3
are an exception, presumably because they combine bursts
of large size with relatively frequent small bursts. Only for
k-3 are the contour lines in parallel for the Interleaved Parity
Code, but A-1, D-2, and k-2 come close. Here, the influence
of segment size becomes visible for larger number of parities.



SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Segment Size

Segment Size

n n n u|
15 20 25 30

Number of Parities

n n
5 10

30000

250001

20000}
8 ©o8
2 0 2
] 5 15000F
£ 40 E
o o
i3 (3
(2] 30 (2]
10000

50001 |

T n L
15 20 25

Number of Parities

L L
5 10 30

Segment Size

Thomas Schwarz, SJ

L
20

m
15
Number of Parities

! !
5 10

Figure 8: Comparison of the Interleaved Parity Code against a linear MDS code for E-2.

30000
25000
20000 >‘
15000
10000

5000

n n n &
15 20 25 30

Number of Parities

n n
5 10

Segment Size

30000

25000

20000

15000

10000

5000

n n n 1
15 20 25 30

Number of Parities

n n
5 10

Segment Size

30000

250007

20000

15000

10000

50007

n n n
15 20 25

Number of Parities

n
5 10

Figure 9: Comparison of the Interleaved Parity Code against a linear MDS code for k-2.

30000F
250000.
200001
15000;
10000

5000

20 25 30

15
Number of Parities

Figure 10: Comparison of the Interleaved Parity Code against a linear MDS code for k-3.

5 10

0.012

0.010

0.008

0.006

0.004

0.002

Segment Size

30000F
250001
20000 [}
15000
10000

5000

15 20 25 30

Number of Parities

5 10

0.014

0.012

0.010

0.008

0.006

0.004

0.002

Segment Size

30000F

25000

20000

15000

10000

5000

[ \‘ 1-\@/\\4/“ ) v h
“\ \\/\\// /\\/\/\/\

144

\ M M\
\ “‘ \ \
iV

5 10 15 20 25 30
Number of Parities

[T 1

N ® A 0O N ® ©

1.20
1.18
1.16
1.14
112
1.10
1.08
1.06
1.04
1.02

(2) The linear MDS code is of course always better, but the
difference is quite small for k-3 and moderate for A-1, k-2
and o-2. It is however drastic for the more susceptible disk
families D-2, E-1, E-2, and n-3. That the contour lines in the
comparison for k-3 jiggle is a result of the paucity of dataloss
for this family.

(3) The relative benefit of linear MDS codes over the Inter-
leaved Parity Code is largest for larger number of parity and
larger segment sizes, but E-1 is an exception.

31

4.2 Pyramid Codes based on linear MDS
codes

We then investigated whether a pyramid code would help to
improve the reliability of the linear MDS code. We break
a segment (referred to as the large segment) of size 10,000
blocks into smaller segments. We also obtained results for a
large segment size of 1000 blocks, but the results are similar.
The size of these small segments is one of our parameters.
Each small segment calculates k; redundant parity blocks. In
addition, we independently calculate k; parity blocks for the
large segment. The total number of parity blocks depends of



Protecting Single Shingled Write Drives Against Latent Sector FailuresSYSTOR 18, June 4—7, 2018, HAIFA, Israel

30000F 30000F
25000 25000
20000 " 20000
[ 3 0
N N o
D 20 @ N
2 2 w0 @
§ 15000F 0 5 15000F H
13 £ EU
= 5 S5
ol ol 54
%] %] 20 @
10000 ¢ 10000 o
1
5000 5000
oL, . ! n ! ! | oL, T n n n u| at n n n n n h|
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Number of Parities Number of Parities Number of Parities
Figure 11: Comparison of the Interleaved Parity Code against a linear MDS code for n-3.
30000
30000F 30000F
25000} 25000
20000 20000} 040 Y .,
8 010 § 0.30 g 5
(7} (2} —
- 0050 = 0 o 5
§ 15000 § 150001 2
£ 0020 E 015 & 4
g g 3
12 0010 @ 0.10 3
10000} o0 10000 008
2
0.02
50001 5000(
5 10 15 20 25 30 5 10 15 20 25 30

Number of Parities

Number of Parities

Number of Parities

Figure 12: Comparison of the Interleaved Parity Code against a linear MDS code for o-2.

200

200

@
o
T

Small Segment Size
=)
o
48w s oo o o~
Small Segment Size

501

150

Small Sector Size
5]
o

50+

5 10 15 20 25 30 5 10
Number of Parities

Number of Parities

n N | N h N N n L
20 25 30 5 10 15 20 25 30

Number of Parities

Figure 13: Comparison of a linear MDS code with a linear MDS Pyramid code with k; = 1 (left), k; = 3 (middle), and
ks = 5 (right) for the E-1 family. The x-axis is given by k; + ;.

course on the size of the small segments. This encoding is
guaranteed to be able to correct the dataloss due to a burst
of kg + k; unreadable sectors, but can correct a burst of 2k, +
k; sectors, if the burst is divided over two small segments

with at least k; unreadable sectors in each small segment.

We simulated this layout for all families with k; = 1,3, and
5 parity blocks per small segment. For space reasons, we
only display typical behavior. We varied the size of the small
segment and kg + k;, the number of parity blocks that would be

32

affected if we were to change a single data block. (Of course,
we do not update single blocks in a shingled-write disk.)

In Figure 13, we show the improvement disks of type E-1.
This type is the most susceptible to latent sector errors. As
we can see, a large improvement in reliability can be realized,
but only if the small groups are small and ks + k;, the number
of parities is also small. Unfortunately, small groups create
considerable storage overhead. To some extent, this behavior
is shared by E-2 for k; = 5.



SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Thomas Schwarz, SJ

Small Segment Size
Small Segment Size

Small Segment Size

. . . L L
20 25 30 5 10

Number of Parities

L
15

i
20
Number of Parities

L L L
15 20 25 30

Number of Parities

. i
25 30 10

Figure 14: Comparison of a linear MDS code with a linear MDS Pyramid code with k; = 1 (left), k; = 3 (middle), and

ks =5 (right)for the k-2 family.

2001

150

100~

Small Segment Size
Small Segment Size

Small Segment Size

h h
5 10
Number of Parities

Figure 15: Comparison of a linear MDS code with a linear MDS Pyramid code with k; = 1 (left), k; = 3 (middle), and
ks =5 (right) for the o-2 family.

The behavior for more reliable disks is different. In Fig-
ures 14 and 15, we give the same comparison for o-2 and
k-2 as typical examples. The improvements are more modest,
and are realized in small band around the x- and the y-axes,
namely when the size of the small groups is small or the num-
ber of parities is very small. The contour graphs are similar
for A-1, D-2, E-2 if k, =1 or k; = 3, and k-3.

4.3 Pyramid Codes based on the Interleaved
Parity code

Finally, we investigated the pyramid code based on the Inter-
leaved Parity Code. Recall that we break the large segment
into small segments. To each small segment we add a single
parity calculated as the exclusive-or of the blocks in the seg-
ment. We simulated large segments of 10000 and 1000 blocks
and varied the size of the small segments and the number of
parities for the interleaved parity code. We recall that a single
data block only contributes to two parity blocks and that all
encoding and recovery operations only involve exclusive-or
operations.

We give our results as contour graphs in Figures 16, 17,
and 17 for a large segment size of 10,000. If we compare

.
15

Number of Parities

33

N 1
25 30

n
20
Number of Parities

. . 1 h
20 25 30 5

the graphs with those depicting the reliability of linear MDS
codes, we see that just increasing the number of parities in
the interleaved code results in protection that is equal to that
provided by the MDS code.

The parity overhead consists mostly of the one caused by
the exclusive-or parity block for each of the small sectors.
In the case of the less susceptible families of disks, namely
k-2, k-3, and 0-2, it is possible to choose a large size for
the small segments (for example 100) and in addition 40 to
50 interleaved parities. This choice of parameters reduces
the percentage of disks with incorrigible latent sector fail-
ures to values for below 0.1%. The parity overhead would be
% =1.5% if we choose large segment sizes of 10000
blocks. As the disks writes a block to a band, it updates the
parity of the small segment and one parity of the interleaved
parity check code. It needs to keep the parities for the inter-
leaved parity check code and in addition the small segment
parity block in RAM. If a disk can be equipped with sufficient
RAM, this code combines good data protection with simple
encoding and simple erasure correction.

A parity overhead of around 1.5% is puny when compared
to the usual overhead in actual storage systems such as the

1
To0 T



Protecting Single Shingled Write Drives Against Latent Sector FailuresSYSTOR 18, June 4—7, 2018, HAIFA, Israel

200 I

200

150

100

Small Segment Size

50

200

0500 1501
0.400

0.300
0.200

0.100 1001

Small Segment Size

0.075
0.050
0.025

50

0.600 150} sp
0400

0.200
0.100
0.070
0.050
0.050
0.030
0.020

Small Segment Size

100 }

0.010 ‘

0.005
50

n n n
10 20 30
Number of Parities

Figure 16: Percentage of disks with a latent sector error using a pyramid code based on the Interleaved Parity Code
for A-1 (left), D-2 (middle), and E-1 (right) disks. The x-axis gives the number of parity blocks in a large segment. The

N
10

n I
40 50

N
20

n
30

L
50

n
40

Number of Parities Number of Parities

sector size is 10,000 blocks.

200

150+

100

Small Segment Size

50

200!

70 150~

100

5
8
Small Segment Size

50

0.500

0.400

0.0100
0.300
0.0075
0.200
0.0050
0.100
0.0020
0.075

Small Segment Size

0050 0.0010
0025 0.0005

0.010

n n n
10 20 30

Number of Parities

Figure 17: Percentage of disks with a latent sector error using a pyramid code based on the Interleaved Parity Code for
E-2 (left), k-2 (middle), and k-3 (right) disks.

Small Segment Size

200

150

100

N
10

I L
40 50

N
20

N
30

L
50

n
40

Number of Parities Number of Parities

50+
|

n n n
10 20 30 40 50
Number of Parities

Small Segment Size

200f!

150
0.100
0.070
0.050
100} 0.020
0.010

0.005

50

10 20 30 40 50

Number of Parities

Figure 18: Percentage of disks with a latent sector error using a pyramid code based on the Interleaved Parity Code for
n-3 (left) and o-2 (right) disks.

12.5% of a RAID Level 6 with a 14+2 stripes. If a disk man-
ufacturer decides to build intra-disk redundancy into every

disk sold, then this overhead is no longer negligible.

34

4.4 Overall Evaluation

If the only criterion for the selection of an intra-parity code is
storage overhead, then one has to select Linear MDS codes.
Unfortunately, we have seen that the number of parity blocks
per segment has to be quite high in order to protect against



SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

large bursts. The linear MDS codes exact a high computa-
tional overhead since every data block written needs to be
processed for each parity block.

If a disk drives encounters a latent sector error, then the
drive has to read all sectors in a reliability stripe in order to
reconstruct the error. If we choose a large segment size, then
we need to read all sectors in it, which leads to a high tail la-
tency, a phenomenon described at length by Li and colleagues
[14]. Luckily, most latent sector errors affect sectors in isola-
tion, and therefore any of the pyramid codes discussed will
do away with the worst tail latencies. Data accesses are not
uniform and most disk reads will be to previously read data.
Since bit rot (a good sector becomes unreadable) is extremely
rare, data once read can be read again without running into a
latent sector error. We conclude that it is sufficient to choose
a pyramid code with a single exclusive-or parity for the small
segment. We then have to choose for the method of generating
parity for the large segment, namely between a linear MDS
code or the interleaved parity code. Since we recommend
making the large segment truly large, the additional storage
overhead of the interleaved parity code needed to obtain the
same erasure-correcting capacity as a linear MDS code be-
comes insignificant. It seems to us that this code reconciles
best the divergent goals of an intradisk redundancy code.

5 RECOMMENDATIONS

Our experiments show that we cannot expect to control latent
sector failures with intra-disk redundancy completely. It is
however possible to reduce the occurrence of incorrigible
latent sector errors to tolerable levels. We base this assess-
ment on the expectation that our extrapolated susceptible disk
present worst cases that are not typical for actual disk fami-
lies. We have also seen that changing the parameters of a code
can deal with susceptibility, namely one can lower the small
segment size and one can increase the number of parities per
large segment.

For disks that are components of a larger storage system,
inter-disk redundancy also protects against latent sector errors.
Plank, Blaum, and Schwartz as well as Li and Lee discuss
codes appropriate for this dual purpose [4, 12, 13, 16]. In
this setting, the purpose of intra-disk redundancy is mainly to
allow fast recovery from small bursts and most prominently,
single block failure. It remains to be investigated whether
intra-disk redundancy can allow the storage system designer
to lower the inter-disk redundancy. For example, instead of
using RAID Level 6, one might be able to use RAID Level 5.

The results of Schroeder and colleagues [19] indicate that
bit-rot is not an important cause of latent sector failures, or, in
other words, that disk blocks do not go bad on their own. Read-
after-Write is therefore the single most effective protection
[18, 22]. As a burst of write requests renders this strategy

35

Thomas Schwarz, SJ

difficult, this still leaves the need for intra-disk redundancy.
The peculiarities of shingled write technology however gives
the Read-after-Write strategy another opportunity. In order
to retrieve freed blocks, a shingled write disk needs to use
garbage collection. A band that contains freed blocks can be
rewritten, skipping of course over the freed blocks. The new
band can then be verified before the old one is declared to
be unallocated. The verifying read after the write of the new
band can be delayed as long as the old band is not overwritten.
This strategy is successful in limiting intra-disk redundancy
to bands containing new user data, lowering its costs.

Finally, the necessary strength of the code depends heavily
on the prevalence of latent sector failures. Naturally enough, a
disk without failures does not need protection. As the results
of Schroeder [19] do not indicate disk age as an important
cause for the prevalence of latent sector failures, we can learn
by observations from an individual disk whether the disk
family is prone to latent sector errors. The lone disks needs to
use periodic scrubbing and can use the number of discovered
(and hopefully recovered latent sector errors) as an indicator
of the proneness. A very simple decision tree can use the
extrapolated number of latent error sectors and the expected
burst length to change code parameters. For instance, if we
encounter a large number of unreadable blocks, then we could
subdivide small segments in a pyramid code or increase the
number of parity blocks for the large segment. Similarly, if we
stop finding latent sector errors, then we can increase the size
of small segments or decrease the number of parity blocks
for the large segment. We leave it to future work to ascertain
whether there are good predictor for the tail-heaviness of the
burst length distribution.

6 CONCLUSIONS AND FUTURE WORK

We investigated the protection given by various forms of intra-
disk redundancy in the context of shingled write disks. No
code can guarantee protection against data loss due to latent
sector errors. However, a pyramid code using only exclusive-
or operations such that each data sector contributes to only
two parity blocks, combines excellent protection with slight
overhead.

Future work needs to obtain data on latent sector failures in
shingled write disks and confirm whether Schroeder’s results
are still valid. With this data, we can then validate the recom-
mendations of this article. In addition, we can also evaluate
the codes that combine inter-disk and intra-disk redundancy
for larger storage systems. We can also then validate the pos-
sibility of having a lone disk adapt to the observed number of
unreadable blocks.

Acknowledgment. 1 would like to thank my shepherd,
Keith Smith, Netapp, for the many helpful comments in im-
proving the presentation of the paper.



Protecting Single Shingled Write Drives Against Latent Sector FailuresSYSTOR 18, June 4—7, 2018, HAIFA, Israel

REFERENCES

(1]

[2

—

3

—

(4]

[5

—_

[6

—

3
|

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ahmed Amer, Darrell D.E. Long, Ethan L. Miller, J.-F. Paris, and
Thomas Schwarz SJ. 2010. Design issues for a shingled write disk
system. In 26th Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, Santa Clara, CA, 1-12.

George Amvrosiadis, Alina Oprea, and Bianca Schroeder. 2012. Prac-
tical scrubbing: Getting to the bad sector at the right time. In 42nd
Annual International Conference on Dependable Systems and Networks
(DSN). IEEE / IFIP, 1-12.

Lakshmi N Bairavasundaram, Garth R Goodson, Shankar Pasupathy,
and Jiri Schindler. 2007. An analysis of latent sector errors in disk
drives. In SIGMETRICS Performance Evaluation Review, Vol. 35(1).
ACM, 289-300.

Mario Blaum, James S. Plank, Moshe Schwartz, and Eitan Yaakobi.
2014. Partial MDS (PMDS) and sector-disk (SD) codes that tolerate
the erasure of two random sectors. In International Symposium on
Information Theory (ISIT). IEEE, 1792-1796.

Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven
Kleiman, James Leong, and Sunitha Sankar. 2004. Row-Diagonal
Parity for Double Disk Failure Correction. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies. USENIX Asso-
ciation, 1-14.

Ajay Dholakia, Evangelos Eleftheriou, Xiao-Yu Hu, Ilias Iliadis, Jai
Menon, and KK Rao. 2006. Analysis of a new intra-disk redundancy
scheme for high-reliability RAID storage systems in the presence of
unrecoverable errors. In ACM SIGMETRICS Performance Evaluation
Review, Vol. 34. ACM, 373-374.

Ajay Dholakia, Evangelos Eleftheriou, Xiao-Yu Hu, Ilias Iliadis, Jai
Menon, and KK Rao. 2008. A new intra-disk redundancy scheme for
high-reliability RAID storage systems in the presence of unrecoverable
errors. ACM Transactions on Storage (TOS) 4, 1 (2008), 1.

Simon Greaves, Yasushi Kanai, and Hiroaki Muraoka. 2009. Shingled
Recording for 2-3 Tbit/in>. IEEE Transactions on Magnetics 45, 10
(2009), 3823-3829.

Cheng Huang, Minghua Chen, and Jin Li. 2013. Pyramid codes: Flexi-
ble schemes to trade space for access efficiency in reliable data storage
systems. ACM Transactions on Storage (TOS) 9, 1 (2013), 3.

Tlias Iliadis, Robert Haas, Xiao-Yu Hu, and Evangelos Eleftheriou.
2008. Disk scrubbing versus intra-disk redundancy for high-reliability
raid storage systems. In SIGMETRICS Performance Evaluation Review,
Vol. 36(1). ACM, 241-252.

Hannu H Kari. 1997. Latent sector faults and reliability of disk arrays.
Ph.D. Dissertation. Helsinki University of Technology Espoo, Finland.

Minggiang Li and Patrick PC Lee. 2014. Stair codes: A general fam-
ily of erasure codes for tolerating device and sector failures. ACM
Transactions on Storage (TOS) 10, 4 (2014), 14.

Minggiang Li and Patrick PC Lee. 2014. STAIR codes: a general
family of erasure codes for tolerating device and sector failures in
practical storage systems.. In USENIX Conference on File and Storage
Technologies, (FAST). 147-162.

Yin Li, Hao Wang, Xuebin Zhang, Ning Zheng, Shafa Dahandeh, and
Tong Zhang. 2017. Facilitating Magnetic Recording Technology Scal-
ing for Data Center Hard Disk Drives through Filesystem-Level Trans-
parent Local Erasure Coding.. In USENIX Conference on File and
Storage Technologies, (FAST). 135-148.

Alina Oprea and Ari Juels. 2010. A Clean-Slate Look at Disk Scrub-
bing.. In USENIX Conference on File and Storage Technologies (FAST).
57-10.

James S Plank and Mario Blaum. 2014. Sector-disk (SD) erasure codes
for mixed failure modes in RAID systems. ACM Transactions on
Storage (TOS) 10, 1 (2014), 4.

36

(17]

[18]

[19]

(20]

[21]

(22]

(23]

[24]

James S Plank, Kevin M Greenan, and Ethan L Miller. 2013. Screaming
fast Galois field arithmetic using Intel SIMD instructions.. In USENIX
Conference on File and Storage Technologies. 299-306.

Alma Riska and Erik Riedel. 2008. Idle Read After Write-IRAW. In
USENIX Annual Technical Conference. 43-56.

Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010. Under-
standing latent sector errors and how to protect against them. ACM
Transactions on Storage (TOS) 6, 3 (2010), 9.

Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D.E. Long,
Andy Hospodor, and Spencer Ng. 2004. Disk scrubbing in large archival
storage systems. In /2th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS 2004), IEEE (Ed.). 409—418.

Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka,
H. Mutoh, and N. Yoshikawa. 2009. Future options for HDD storage.
Transactions on Magnetics 45, 10 (2009), 3816-3822.

John Tillson. 1999. Disk drive incorporating read-verify after write
method. (Aug. 24 1999). US Patent 5,941,998.

Vinodh Venkatesan and Ilias Iliadis. 2013. Effect of latent errors on the
reliability of data storage systems. In 21st International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), IEEE (Ed.). 293-297.

Roger Wood, Mason Williams, Aleksandar Kavcic, and Jim Miles.
2009. The feasibility of magnetic recording at 10 terabits per square
inch on conventional media. IEEE Transactions on Magnetics 45, 2
(2009), 917-923.



	Abstract
	1 Introduction
	2 Intra-disk Redundancy Coding
	2.1 Linear MDS Codes
	2.2 Interleaved Parity Check Codes
	2.3 Pyramid Codes based on linear MDS codes
	2.4 Exclusive-Or Parity Based Pyramid Codes

	3 Experimental Set-up
	4 Results
	4.1 Interleaved Parity Code versus linear MSD code
	4.2 Pyramid Codes based on linear MDS codes
	4.3 Pyramid Codes based on the Interleaved Parity code
	4.4 Overall Evaluation

	5 Recommendations
	6 Conclusions and Future Work
	References

